

Journal of Molecular Spectroscopy 240 (2006) 174-187

Journal of
MOLECULAR
SPECTROSCOPY

www.elsevier.com/locate/jms

Rotational energy cluster formation in XY₃ molecules: Excited vibrational states of BiH₃ and SbH₃

Sergei N. Yurchenko a,*, Walter Thiel a, Per Jensen b

^a Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany ^b FB C—Mathematik und Naturwissenschaften, Fachgruppe Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany

> Received 19 June 2006 Available online 13 October 2006

Abstract

Previous theoretical work on energy cluster formation at high rotational excitation in the vibrational ground state of PH₃ [S.N. Yurchenko, W. Thiel, S. Patchkovskii, P. Jensen, Phys. Chem. Chem. Phys. 7 (2005) 573] is extended to BiH₃ and SbH₃. By means of variational calculations of the rotation—vibration energies based on *ab initio* potential energy surfaces, we analyze the rotational energy clustering of BiH₃ and SbH₃ at $J \le 70$ for a number of vibrational states. We show that BiH₃ and SbH₃, with their pronounced local mode behaviour, exhibit cluster formation already at moderate rotational excitation. In addition, owing to its quasi-spherical-top character, BiH₃ undergoes an imperfect bifurcation at high J. This gives rise to an energy cluster type not present in PH₃ and SbH₃. We present a semi-classical approach to the construction of the rotational energy surfaces for vibrationally excited states. © 2006 Elsevier Inc. All rights reserved.

Keywords: Energy clusters; Rotational energy; Excited vibrational states; Bifurcations; Local mode

1. Introduction

We have recently demonstrated by theoretical calculation [1] that in the vibrational ground state of PH₃, the highly excited rotational states form near-degenerate energy clusters. We have also computed the line strengths for transitions involving these cluster states [2]. In the present work, we study theoretically the energy-cluster formation in BiH₃ and SbH₃. In these molecules, in particular in BiH₃, the energy clusters form at lower rotational excitation than in PH₃ and, in consequence, the theoretical calculation of the cluster energies is computationally less demanding. Because of this, we have been able to extend the study of the cluster phenomenon to the vibrationally excited states of BiH₃ and SbH₃.

The formation of rotational energy clusters in a molecule provides a good example of how a system, which is completely described by quantum mechanics at low energy, approaches the classical limit, at least for the rotational motion, with increasing excitation. The parameter governing the transition is the angular momentum quantum number J (see, for example, Ref. [3]). By studying the rotational motion of the molecule from J=0 to $J\gg 1$, we can follow the continuous change from an entirely quantum mechanical system to one where the rotational motion is classical. This transition connects two modelling paradigms: At the low-energy, quantum-mechanical limit, the molecular rotation is described by a simple rigid-rotor model, whereas at very high energy, another simple model, involving classical trajectories, is applicable. Between the two limits there is an intermediate region with a dense and disordered energy structure which is difficult to interpret.

In highly excited rotational states, we typically find that characteristic 'stable' axes of rotation emerge, about which the molecule prefers to rotate. This type of rotation tends to simplify the rotational energy level pattern since, when several symmetrically equivalent stable axes are present, the rotational energy levels form clusters, that is, groups

^{*} Corresponding author. Fax: +49 208 306 2996. E-mail address: yurchenko@mpi-muelheim.mpg.de (S.N. Yurchenko).

of quasi-degenerate energy levels. Dorney and Watson [4] were the first to realize this; they explained the energy cluster formation in spherical top molecules in terms of classical rotation about symmetrically equivalent axes. Subsequently, Harter and co-workers (see, for example, Refs. [5,6]) have developed extensive classical models for the qualitative description of rotational-energy cluster formation in XY_N molecules. They introduced the now wellknown concept of a rotational energy surface (RES), defined as the classical (or semi-classical) rotational energy of a molecule obtained as a function of the direction (relative to the molecule) of the classical angular momentum vector, which is taken to have a length of $|\mathbf{J}|$ = $\sqrt{J(J+1)}\hbar$. The topology of the RES (in particular its stationary points) defines the patterns of the rotational energy levels. Pavlichenkov and Zhilinskií [7] illustrated how the bifurcation of stationary points on the RES affects the formation of rotational energy clusters. The role of symmetry in the cluster formation process has been also studied in great detail (see, for example, [8]).

In addition to the classical studies there have been many quantitative, quantum-mechanical studies of the rotational cluster formation (see, for example, the reviews [9,10]). This work was concerned with dihydrides H_2X and, to a lesser extent, with methane-type spherical top molecules XY_4 . As mentioned above we have recently extended this work to XY_3 molecules in that we have shown by variational, quantum-mechanical calculation that rotational energy clusters form in the vibrational ground state of PH_3 . We have characterized two basic types of rotational clusters for PH_3 : Two- and sixfold clusters. The twofold clusters are associated with classical rotation about an axis close to the C_3 rotational symmetry axis for a PH_3 molecule at equilibrium; this axis is found to be stable at any value of J. The sixfold energy clusters can be understood as result-

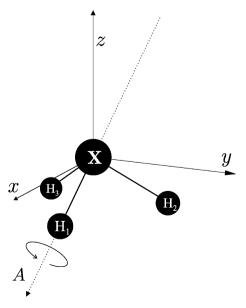


Fig. 1. The labeling of the nuclei chosen for XH_3 , the molecule-fixed z axis, and the localization axis A (see text).

ing from (clockwise or anti-clockwise) rotation about three symmetrically equivalent axes A (see Fig. 1). These axes lie in planes close to the three planes of reflection of a PH₃ molecule at equilibrium. As J increases, each axis approaches one of the P-H bonds. Thus, in a somewhat simplistic picture, we can think of the rotation in the cluster states at $J \to \infty$ as taking place about the three P-H bonds in PH₃. In this situation, the P-H localized rotation is naturally orthogonal to any other degree of freedom and, thus, reaches the highest degree of separation from these. We know that separations of this kind between vibrational degrees of freedom cause local-mode behaviour [10,11] and it was discussed for triatomic dihydrides H₂X in Ref. [10] how the local mode behaviour is intimately related to the phenomenon of energy clustering. An H₂X molecule whose vibration is well described by a local-mode model will have rotational energy clusters at relatively low rotational excitation. We expect that analogously, XH₃ molecules with pronounced local-mode behaviour will exhibit sixfold energy clusters at relatively low rotational excitation. The PH₃ molecule, however, whose cluster formation has been studied in Refs. [1,2], is far from being an ideal local-mode molecule, and therefore it is not an ideal case for studying cluster formation. The ultimate limit of complete mode separation, achieved by rotational excitation, is physically inaccessible for PH₃: Before it is reached, centrifugal distortion breaks the P-H bonds [1].

In our search for 'ideal' local-mode XY₃ molecules with 'perfect' energy clustering effects, we consider here the molecules BiH₃ and SbH₃. BiH₃ is a typical local-mode molecule [12] with a heavy central Bi atom bound to three much lighter H atoms. It has small intermode coupling and bond angles very close to 90°. The large ratio of the Bi mass to the proton mass, the small intermode coupling, and the near-90° bond angles are all conducive to local mode behaviour [10]. The fact that the Bi-H bonds are almost orthogonal makes them ideally oriented for stable rotations. As mentioned above, for BiH₃ and SbH₃ it is viable to compute highly excited rotational energies in excited vibrational states, and so we can study the cluster formation in these states. Local-mode theory predicts that stretching excitation accelerates the stabilization of the rotational axes [10] and, therefore, it makes the rotational energy clusters form at lower J values than in the vibrational ground state. We show in the present work that the BiH₃ and SbH₃ cluster formation indeed is 'faster' in this sense than that of PH₃. It is even more interesting that the rotational energy level patterns of BiH₃ exhibit special cluster features not found in the case of the less pronounced local-mode molecule PH₃. An important reason for the differences in cluster formation between PH₃ and BiH₃ is that BiH₃ is an almost perfect, accidental spherical top [13]. In order to see how this affects the rotational cluster formation, we compare the results for BiH₃ with those obtained for SbH₃. SbH₃ has local-mode properties very similar to those of BiH₃, but it has a less pronounced spherical top character.

Download English Version:

https://daneshyari.com/en/article/5415994

Download Persian Version:

https://daneshyari.com/article/5415994

Daneshyari.com