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Abstract

A description of vibrational excitations of pyramidal molecules in terms of the unitary group approach U(m + 1) is presented. Based
on the recent reformulation of this algebraic method the Hamiltonian is first expressed in the space of coordinates and momenta and
thereafter translated into an algebraic realization in terms of the generators of the dynamical group Us(4) · Ub(4), where s and b stand
for stretching and bending degrees of freedom, respectively. Fermi and number interactions are considered in the stretching–bending
contribution of the Hamiltonian. This new approach provides in natural form the connection between the spectroscopic parameters
and force constants. The analysis of the vibrational excitations of arsine is presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decades local mode models have provided an
alternative way to study highly excited vibrational states of
symmetrical molecules. Because significant differences in
atomic masses and anharmonicity are correlated, local
behavior is strongly manifested in systems containing
hydrogen atoms, like for instance H2O, AsH3, SbH3,
C2H2, SiH2 and C6H6 [1–3]. The observed stretching vibra-
tional energy level patterns with close degeneracies are typ-
ical of these molecules, a feature that is nicely explained
with the simplest version of this theory, where the bond
oscillators are coupled by bilinear kinetic and potential
energy terms [4]. The basic idea of the local models consists
in considering a set of non interacting oscillators as a zer-
oth order Hamiltonian in such a way that the strength of
their coupling versus bond anharmonicities determines
the local character of the spectra. Although this approach

was originally applied only to stretching modes, using
Morse oscillators for the diagonal contribution and taking
a harmonic approximation for the interaction matrix ele-
ments (harmonically coupled anharmonic oscillator model)
[1,4], an extension to include the bending vibrations as
valence angle oscillators was also developed [5]. In the lat-
ter case a direct product of functions is proposed as a basis,
with Morse functions for the stretching degrees of freedom
and harmonic oscillator functions for the bending modes.
A more general approach may be possible in which Morse
oscillators are considered for stretches and asymmetrical
bends and Pöshel-Teller oscillators for symmetrical out-
of-plane modes [6]. This treatment has the advantage that
it allows to unify in an algebraic SU(2) representation the
vibrational description of molecules without losing the con-
nection with the configuration space [7–11]. An alternative
local approach to describe vibrational excitations is repre-
sented by algebraic methods based on the use of unitary
dynamical groups [12,13].

The second quantization formalism [14] and factoriza-
tion methods [15–17] have given rise to a wide variety of
algebraic methods in different fields of physics and
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chemistry [18–21]. In particular, when the vibrational exci-
tations are described in terms of a basis of harmonic oscil-
lators the number operator representation has proved its
usefulness to compute matrix elements as well as to estab-
lish relevant interactions in the construction of effective
Hamiltonians in both local and normal representations
[12,19,22]. In the framework of a local mode picture
another possibility of description consists in considering
Morse and/or Pöshel-Teller oscillators either algebraically
or in configuration space. In any case the approach pro-
vides a basis defined by the eigenfunctions of the zeroth
order Hamiltonian of independent oscillators. An alterna-
tive basis is provided by the U(m + 1) model, although in
this case there is no clear potential associated with it.

The U(m + 1) model was proposed some time ago first in
the context of the description of collective states of nuclei
[23,24] and later on in the field of molecular physics
[12,13]. In the latter case for a set of m equivalent oscillators
the dynamical group becomes U(m + 1), while for several
sets of equivalent oscillators the direct product of groups
is taken as the dynamical group. Recently a connection
between the unitary group approach and the traditional
description in configuration space of vibrational excitations
was proposed [25,26]. This new approach has the remark-
able feature that it is possible to set up the U(m + 1) alge-
braic representation of any Hamiltonian in configuration
space without ambiguities, allowing to obtain force con-
stants and model dipole transition operators directly from
dipole functions in coordinates [26]. Up to now the appli-
cation of this approach has been restricted to the stretching
modes of arsine, where force constants and dipole transi-
tions were studied. An analysis of the stretching modes of
arsine using the traditional U(m + 1) approach has also
been presented [27]. In this contribution we proceed to
establish the general description of pyramidal molecules
where no tunneling motion is allowed. This approximation
is justified for systems where no inversion splitting is
observed, like arsine and stibine [28–30]. In order to evalu-
ate this new approach we shall present a study of the com-
plete overtone spectra of arsine in a close correspondence
with previous analysis in configuration space, including
the attainment of force constants.

This paper is organized as follows. A summary of the
new formulation of the U(m + 1) model is briefly presented
in Section 2. Section 3 is devoted to establish the general
model to describe the vibrational excitations of pyramidal
molecules. The analysis of the results obtained for arsine
is discussed in Section 4. Finally, our summary and conclu-
sions are given in Section 5.

2. A summary of the U(m + 1) approach to vibrational

excitations

In this section we present a summary of the U(m + 1)
model according to the new reformulation presented in
Ref. [25,26]. Let us start considering m equivalent oscilla-
tors. Associated with the i-th oscillator we have bosonic

creation âyi and annihilation âi operators. An additional ŝ
boson is added with the constraint that the total number
of bosons N̂ is constant. In this model the state vectors
associated to a local mode description consist of a set of
m + 1 independent harmonic oscillators. Explicitely the
basis is given by [25]

j½N �; n; n1; n2; . . . ; nmi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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which is characterized by the total number of quanta N,
whose corresponding operator is given by

N̂ ¼ n̂þ n̂s; ð2Þ
with

n̂ ¼
Xm

i¼1

âyi âi; n̂s ¼ ŝyŝ: ð3Þ

The addition of the boson ŝ together with the fact that the
representation [N] is fixed, makes the unitary group
U(m + 1) a dynamical group for the set of m oscillators.

From the generators of the unitary group U(m + 1) the
following operators are introduced [25,26]
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ŝâyiffiffiffiffi
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with commutation relations
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½n̂dij þ âyj âi�; ½b̂yi ; b̂yj � ¼ ½b̂i; b̂j� ¼ 0; ð5Þ

which may be identified with the angular momentum com-
mutation relations [31]. The action of these operators over
the kets (1) is the following

b̂yi j½N �; n; n1; n2; . . . ; nmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni þ 1Þ 1� n

N

� �r
j½N �; n

þ 1; n1; ::; ni þ 1; ::; nmi; ð6aÞ

b̂ij½N �; n; n1; n2; . . . ; nmi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni 1� n� 1

N

� �s
j½N �; n

� 1; n1; ::; ni � 1; ::; nmi; ð6bÞ

while for the operators âyi ðâiÞ

âyi j½N �; n; n1; n2; . . . ; nmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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In the harmonic limit the operators b̂yi ðb̂iÞ go to âyi ðâiÞ, with
the usual bosonic commutation relations [25,26].

When a sets of equivalent oscillators are present in the
vibrational description, a u(m + 1) algebra is introduced
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