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a b s t r a c t

The transient thermal properties of an IC package are typically characterized by the thermal step-

function response and/or by the time-constant spectrum. The temperature response is acquired from

measurements or simulations while the time-constant spectrum is obtained from this response, using

the NID method (Network Identification by deconvolution). The NID method is accurate only if the

calculation is based on the exact step-function response. However, practical measurements provide us

with responses which are more or less accurate but never absolutely exact. In our paper we present the

sources of deviations and a method to eliminate their effect. We demonstrated the process on examples

where the level of the corrected errors can be seen at various time-constants.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In a thermal characterization problem the time-constant
spectrum [1] is obtained from the thermal step-function, using
the NID method [2]. The NID method requires an exact step-
function response. In a general case the thermal step-function
responses are provided by measurements that are never abso-
lutely exact, we have to deal with deviations. There are other
methods for thermal characterizations such as the multipoint
moment matching method [3], however, in this paper we are
dealing only with the NID method. The physical sources of the
deviations are:

1. the onset of the step-function excitation does not occur exactly
at the t¼0 instant (per definition t¼0 is the time instant
corresponding to the 0 point of the time scale assigned to the
measured response),

2. the rise time of the excitation is finite,
3. the cut-off frequency of the used measurement instrument is

finite,
4. the measured object, the used temperature sensor and/or the

measuring instrument suffers from slight nonlinearity.

It is highly needed to clarify the effect of these imperfections, in
order:

� to have an image about the accuracy of the measurement and
identification process currently used,
� to correct the systematic errors.

In this paper we are dealing with the first three sources of the
deviations enumerated above. These effects can be handled on the
basis of linear network theory. The nonlinear effects (fourth in
the enumeration) have been discussed in an earlier paper from
our research group [4].

This subject is relevant because e.g. an upcoming standard will
describe the thermal transient measurement as a standard
method to estimate the junction-to-case thermal resistance
[5,6], therefore, the accuracy improvement is vital.

In the framework of our investigation the time-constant
spectrum is regarded as the primary description function of the
thermal one-port. We intended to treat the effect of the above
imperfections as some characteristic distortion of the time-
constant spectrum.

2. Time-constant spectrum

In this paragraph we summarize the definition of the time-
constant spectrum, based on [7]. Owing to size limitations we do
not present here the detailed discussions and proofs concerning
these notions and relations. Despite of this, if the reader accepts
the equations presented in this chapter, following the further
parts of the paper must not raise difficulties.

A lumped element one-port can be represented by a finite
number of t time-constants and R magnitudes. A graphical
representation of this is demonstrated in Fig. 1. Each line of this
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plot corresponds to a time-constant and the height of the line is
proportional to its magnitude. This figure can be regarded as
some kind of a spectrum; the spectrum of time-constants appears
in the step-function response of the network. Evidently the port-
impedance of a lumped element network has discrete ‘‘spectrum
lines’’ in finite number. An infinite distributed network has no
discrete lines, but it is expected that some continuous spectrum
would be suitable to describe them. The physical meaning of this
idea is that in a general response any time-constant can occur in
some amount, some density so that a density spectrum can be
suitable to describe it.

Let us exactly define this spectrum function. First we introduce
a new, logarithmic variable for time and time-constants. This
choice leads to convolution-type equation for the network
response, which offers an easy way for network identification
(the NID method)

z¼ log t ð1Þ

z¼ log t ð2Þ

Let us consider an RC one-port the response of which contains
numerous exponentials having different time-constants and mag-
nitudes. The time-constant density is defined as

RðzÞ ¼ lim
Dz-0

sum of magnitudes between z and zþDz
Dz

ð3Þ

Obviously this definition gives a density function on the logarith-
mic time-constant scale. From this definition it directly follows
that the step-function response can be composed from the time-
constant density

aðtÞ ¼

Z 1
�1

RðzÞ 1�exp �
t

expðzÞ

� �� �
dz ð4Þ

In this interpretation an integral equation gives the time-constant
density from the response function of the one-port. Derivation of
this equation leads to a convolution type relation

da

dz
¼ RðzÞ � expðz�expðzÞÞ ð5Þ

which is the base equation of NID identification method.
Time-constant spectrum can be defined on the linear time

scale as well. Let be denoted this latter by DðtÞ. In the following
calculations we always use this latter variant of the time-constant
spectrum. This function shows one-to-one correspondence with
RðzÞ spectrum defined by (3)

RðzÞ ¼ expðzÞ � Dðt¼ expðzÞÞ ð6Þ

Based on this fact we will conclude that the further statements
are valid for RðzÞ as well.

3. Effect of the non-ideal excitation

If the one-port is characterized by the DðtÞ time-constant
spectrum then its unit step response is written as

aðtÞ ¼

Z 1
0

DðtÞ � ð1�expð�t=tÞÞ dt ð7Þ

if tZ0 else aðtÞ ¼ 0.
The Dirac-d response of the same one-port is

sðtÞ ¼
da

dt
¼

Z 1
0

DðtÞ
t

expð�t=tÞ dt ð8Þ

if tZ0 else sðtÞ ¼ 0.
The non-ideal excitation is E(t), which is 0 if totE0

, 1 if t4tE1

(see Fig. 2). The derivative of this function is

eðtÞ ¼
dE

dt
ð9Þ

The m(t) response that is measured using the actual excitation
is calculated by the convolution integral

mðtÞ ¼ eðtÞ � sðtÞ ¼

Z tE1

tE0

eðxÞ �

Z 1
0

DðtÞ
t

expð�ðt�xÞ=tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} dt dx ð10Þ

The integral marked by the brace is zero if t�xo0, that is if tox

(see (8)). We intended to avoid this region during integration by x,
assuming a condition of t4tE1

. The region of the m(t) measured
function required by the time-constant identification is the ð0,1�
time interval. This means that tE1

should be less than zero in order
to fulfill the condition. The excitation shown in Fig. 2 complies
with this condition. The following derivation (Eqs. (11)–(15)) is
correct if this condition is fulfilled

mðtÞ ¼

Z tE1

tE0

Z 1
0

eðxÞ �
DðtÞ
t expð�t=tÞ expðx=tÞ dt dx ð11Þ

We can regroup the parts of Eq. (11)

mðtÞ ¼

Z 1
0

DðtÞ
t

Z tE1

tE0

eðxÞ � expðx=tÞ dx expð�t=tÞ dt ð12Þ

This means that the Dm measured spectrum (in more correct
phrasing: the spectrum belongs to the measured response and
can be calculated from this response in ideal case referred here as
Dm) can be written as

DmðtÞ ¼DðtÞ
Z tE1

tE0

eðxÞ � expðx=tÞ dx¼DðtÞ � KðtÞ ð13Þ

where

KðtÞ ¼
Z tE1

tE0

eðxÞ � expðx=tÞ dx ð14Þ

KðtÞ is a correction function which can be calculated if the rising
function of the excitation is known. Possessing this function the
correction of the time-constant spectrum can be performed by

R

�

Fig. 1. Discrete time-constant distribution.
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Fig. 2. Onset of the excitation.

V. Székely, A. Szalai / Microelectronics Journal 43 (2012) 904–907 905



Download English Version:

https://daneshyari.com/en/article/541616

Download Persian Version:

https://daneshyari.com/article/541616

Daneshyari.com

https://daneshyari.com/en/article/541616
https://daneshyari.com/article/541616
https://daneshyari.com

