

MOLECULAR SPECTROSCOPY

Journal of

www.elsevier.com/locate/jms

Journal of Molecular Spectroscopy 236 (2006) 97-109

Fourier transform microwave spectroscopy of N,N-dimethylacetamide

Masaharu Fujitake *, Yuji Kubota, Nobukimi Ohashi

Division of Mathematical and Physical Sciences, Graduated School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

> Received 25 November 2005; in revised form 16 December 2005 Available online 9 February 2006

Abstract

The jet-cooled Fourier-transform microwave spectrum of *N*,*N*-dimethylacetamide was recorded in the region of 12–24 GHz, and was analyzed to determine rotational constants and nuclear quadrupole coupling constants. Coriolis-like coupling parameters characterizing interaction between internal rotation of methyl groups and the overall rotation were also determined from internal-rotation tunneling splittings of the rotational transitions. The Coriolis-like coupling parameters permitted determination of the barrier heights to internal rotation of the three methyl groups, which were found to be 677, 237, and 183 cm⁻¹ for the *C*-methyl top, the *trans-N*-methyl top and the *cis-N*-methyl top, respectively.

© 2006 Elsevier Inc. All rights reserved.

Keywords: N,N-dimethylacetamide; Fourier-transform microwave spectroscopy; Three non-equivalent methyl tops; Barrier heights to internal rotation

1. Introduction

N,N-Dimethylacetamide, CH_3 —C(=O)— $N(CH_3)_2$, is a molecule of spectroscopic interest, because it contains three non-equivalent methyl tops. It is also of chemical importance because it contains a —C(=O)—N— group, which is related to a peptide molecule, such as N-methylacetamide [CH_3 —C(=O)—NH— CH_3], in which a hydrogen atom is replaced by a methyl group. Recently, the nozzle-jet Fourier transform microwave spectrum of *trans-N*-methylacetamide was studied by Ohashi et al. [1], who determined barrier heights to internal rotation of the two methyl groups to be $V_3 = 79.06(9)$ cm⁻¹ for the N-methyl top and $V_3 = 73.47(5)$ cm⁻¹ for the C-methyl top. The main interest of the present study of N,N-dimethylacetamide is to determine how different the barrier heights for methyl top rotation are for these two molecules having a similar skeleton.

A number of properties of N,N-dimethylacetamide, including structures, vibrational frequencies, NMR chemical shift etc., have been computed in ab initio studies [2–5].

* Corresponding author. Fax: +81 76 264 5739.

E-mail address: masaharu@cphys.s.kanazawa-u.ac.jp (M. Fujitake).

Internal rotation about the amide C-N bond of *N*,*N*-dimethylacetamide was investigated also in ab initio studies [2,3], but no literature treating internal rotation of the methyl groups were found. In the present microwave study, internal rotation of the methyl groups is treated by a detailed spectral analysis based on a group theoretical formalism, and information on barrier heights to the three methyl tops internal rotations is obtained.

2. Experimental

The Fourier-transform microwave (FTMW) spectrum of N,N-dimethylacetamide was measured in selected ranges between 12 and 24 GHz using the nozzle-jet FTMW spectrometer recently installed at Kanazawa University [6]. A reservoir nozzle was heated to about 70 °C to increase the sample concentration in the molecular beam. The carrier gas was an 80%/20% mixture of argon and helium. A commercial sample of N,N-dimethylacetamide was used without further purification. The spectral ranges to be measured were selected by referring to transition frequencies predicted from structural parameters obtained in an ab initio study [2].

3. Tunneling-rotational Hamiltonian matrix based on a group theoretical treatment

The permutation-inversion (PI) group for N,N-dimethy-lacetamide is G_{54} , if one assumes that internal rotation is feasible for all three methyl groups, and that the heavy

Table 1
Flements of group Gr., for N N-dimethylacetamide^a

Elements of group G_{54} for N,N -dimethylacetamide ^a	
$\overline{O_1}$	Е
O_2	(123)
O_3	(132)
O_4	(456)
O_5	(465)
O_6	(789)
O_7	(798)
O_8	(123)(456)
O_9	(123)(465)
O_{10}	(132)(456)
O ₁₁	(132)(465)
O_{12}	(123)(789)
O ₁₃	(123)(798)
O ₁₄	(132)(789)
O ₁₅	(132)(798)
O ₁₆	(456)(789)
O ₁₇	(456)(798)
O ₁₈	(465)(789)
O_{18} O_{19}	(465)(798)
O_{20}	(123)(456)(789)
O_{20}	(123)(456)(798)
O_{22}	(123)(465)(789)
O_{23}	(123)(465)(798)
O_{23} O_{24}	(132)(456)(789)
O_{24} O_{25}	(132)(456)(798)
O_{25} O_{26}	(132)(465)(789)
O_{26} O_{27}	(132)(465)(798)
O_{27} O_{28}	(23)(56)(89)*
O_{28} O_{29}	$(123) O_{28}$
O_{30}	$(123) O_{28}$ $(132) O_{28}$
O_{31}	$(456) O_{28}$
O_{31} O_{32}	$(465) O_{28}$ $(465) O_{28}$
	$(789) O_{28}$
O ₃₃ O ₃₄	$(789) O_{28}$ $(798) O_{28}$
	$(123)(456) O_{28}$
O_{35}	
O_{36}	(123)(465) O ₂₈ (132)(456) O ₂₈
O ₃₇	==
O_{38}	(132)(465) O ₂₈ (123)(789) O ₂₈
O ₃₉	. ,. , 20
O_{40}	(123)(798) O ₂₈ (132)(789) O ₂₈
O_{41}	
O_{42}	(132)(798) O ₂₈
O_{43}	(456)(789) O ₂₈
O ₄₄	(456)(798) O ₂₈
O ₄₅	(465)(789) O ₂₈
O_{46}	(465)(798) O ₂₈
O ₄₇	(123)(456)(789) O ₂₈
O_{48}	(123)(456)(798) O ₂₈
O_{49}	(123)(465)(789) O ₂₈
O_{50}	(123)(465)(798) O ₂₈
O_{51}	(132)(456)(789) O ₂₈
O_{52}	(132)(456)(798) O ₂₈
O_{53}	(132)(465)(789) O ₂₈
O ₅₄	(132)(465)(798) O ₂₈

^a 1, 2, 3, 4, 5, 6, 7, 8, and 9 denote hydrogen atoms in the three methyl groups.

atom skeleton is planar. Elements of the PI group G_{54} are shown in Table 1. Table 2 gives the character table for this G_{54} group. In Fig. 1, a schematic tunneling splitting pattern of the J=K=0 level is shown. Since the observed tunneling splittings are on the whole small, it seems appropriate to analyze the spectrum by a group theoretical treatment which is useful for the high barrier case. We describe below briefly the present treatment of the tunneling-rotational problem of N,N-dimethylacetamide, following the group theoretical method developed for the hydrazine molecule by Hougen [7].

The phenomenological Hamiltonian used here is written as follows:

$$H = h_v + AJ_z^2 + BJ_x^2 + CJ_y^2 - \Delta_J \mathbf{J}^4 - \Delta_{JK} \mathbf{J}^2 J_z^2 - \Delta_K J_z^4 - \delta_J 2 \mathbf{J}^2 \left(J_x^2 - J_y^2 \right) - \delta_K \left[J_z^2 \left(J_x^2 - J_y^2 \right) + \left(J_x^2 - J_y^2 \right) J_z^2 \right] + iqJ_z + isJ_x.$$
 (1)

The last two terms in Eq. (1) represent the Coriolis interaction between the overall rotation and the methyl internal rotation. Coefficients h_v , A, B, C, Δ_J , Δ_{JK} , Δ_K , δ_J , and δ_K are of A_1 symmetry species, and q and s belong to A_2 symmetry species. The following transformation properties of the coefficients under the combined operation (\ddagger) of Hermitian conjugation and time reversal are also useful:

$$h^{\ddagger}=+h \text{ for } h=h_v,\ A,\ B,\ C,\ \Delta_J,\ \Delta_{JK},\ \Delta_K,\ \delta_J,\ \text{and } \delta_K$$
 $h^{\ddagger}=-h \text{ for } h=q \text{ and } s.$

$$(2)$$

The 27 vibrational framework functions $|n\rangle$ (n = 1, 2, ..., 27) appearing in the present treatment are represented by

$$|n\rangle = \mathcal{O}_n|1\rangle, \quad n = 1, 2, \dots, 27,$$

where O_n 's denote the PI operations as defined in Table 1. Based on the description given above, parameterized expressions for the tunneling-rotational Hamiltonian matrix elements are given as

$$\begin{split} &\langle \Gamma; J, K | H | \Gamma; J, K' \rangle \\ &= \sum_{n} f(\Gamma)_{n} [\langle 1 | h_{v} | n \rangle \delta_{KK'} + \langle 1 | A | n \rangle K^{2} \delta_{KK'} \\ &+ \langle 1 | B | n \rangle \langle J, K | J_{x}^{2} | J, K' \rangle + \langle 1 | C | n \rangle \langle J, K | J_{y}^{2} | J, K' \rangle \\ &- \langle 1 | \Delta_{J} | n \rangle J^{2} (J+1)^{2} \delta_{KK'} - \langle 1 | \Delta_{JK} | n \rangle J (J+1) K^{2} \delta_{KK'} \\ &- \langle 1 | \Delta_{K} | n \rangle K^{4} \delta_{KK'} - 2 \langle 1 | \delta_{J} | n \rangle J (J+1) \langle J, K | (J_{x}^{2} - J_{y}^{2}) | J, K' \rangle \\ &- \langle 1 | \delta_{K} | n \rangle (K^{2} + K'^{2}) \langle J, K | (J_{x}^{2} - J_{y}^{2}) | J, K' \rangle] \\ &+ \sum_{n} \sqrt{3} g(\Gamma)_{n} [\langle 1 | q | n \rangle K \delta_{KK'} + \langle 1 | s | n \rangle \langle J, K | J_{x} | J, K' \rangle], \end{split}$$

$$(4)$$

where $f(\Gamma)_n$ and $g(\Gamma)_n$ are numerical factors given in Tables 3 and 4. In Tables 3 and 4, A_1 and A_2 species are both found in the AAA row, since A_1 and A_2 merely

^{*} represents an inversion operation in the PI group theory.

Download English Version:

https://daneshyari.com/en/article/5416215

Download Persian Version:

https://daneshyari.com/article/5416215

Daneshyari.com