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a b s t r a c t

It is well known that standard time-dependent density functional theory (TD-DFT) affords both a quan-
titative and qualitative incorrect picture of charge transfer transitions between two spatially separated
regions. It is shown here that the well-known failure can be traced back to the use of linear response the-
ory. Further, it is demonstrated that the inclusion of higher order response terms readily affords a qual-
itatively correct picture even for simple functionals based on the local density approximation. By using
the higher order response terms, we finally derive a correction that can be added as a perturbation to
charge transfer excitation energies calculated by standard TD-DFT.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade time-dependent DFT (TD-DFT) [1,2] has
emerged as a new and promising approach in the study of excited
state properties [3,4]. Experience has shown that excitation ener-
gies calculated by TD-DFT often are in reasonably good agreement
with experiment. It is thus not surprising that TD-DFT is applied
widely as a good compromise between accuracy and computa-
tional expediency [3,4]. Nevertheless, the use of the generalized
gradient approximation (GGA) and other popular approximate
functionals (in conjunction with TD-DFT) have revealed some sys-
tematic errors [5,9] in the calculated excitation energies. Errors are
especially large for transitions of electrons between two separated
regions of space or between orbitals of different spatial extend. We
have in a previous study [10] demonstrated that the simple linear
response approach taken in standard TD-DFT introduces serious
problems not present in the corresponding Hartree–Fock [2]
time-dependent formulation. It was further shown that higher or-
der response contributions might be needed to calculate excitation
energies accurately with DFT. We shall here use our analysis to
demonstrate how higher order response terms can be used to give
a qualitatively correct picture of charge transfer transitions.

2. Results and discussion

Many elegant studies [5–9] have shown that charge transfer
transitions are treated even qualitatively incorrect in TD-DFT.
Some of these studies have in addition proposed schemes that
remedy these problems efficiently by introducing modified func-
tionals or correction terms based on sound physical arguments
[5–9,11]. Out task here is to demonstrate that there is nothing
wrong with TD-DFT if one goes beyond the simple first order ap-
proach. In fact with higher order terms included there is nothing
wrong with standard functionals such as the one based on the local
[12–15] density approximation or GGA’s [14,15] either. In order to
demonstrate this, we shall make use of a simple model of charge
transfer in which some simplifying assumptions are introduced
that might be of quantitative importance. However, they should
not change the qualitative picture.

2.1. Formulation of a simple model for charge transfer

Let us now consider a simple model in which we have a neutral
donor molecule D and a neutral acceptor molecule AC separated
completely in space by a distance R. Both D and AC are closed shell
molecules and the entire system can be described in KS-theory
[13,14] by a single Slater determinant

W0 ¼ w1w2 . . . wiwj . . . wn

�� ��; ð1Þ

for which the associated density matrix
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qð1;10Þ ¼
Xocc

i

w�i ð1
0Þwið1Þ; ð2Þ

optimizes the energy expression

EKS ¼ ETþVNe þ EC þ EXC;KS: ð3Þ

Here

ETþVNe ¼
Z
½ĥ0ð10Þqð1;10Þ�ð1¼10Þds1; ð4Þ

where ĥð0Þ contains the kinetic energy operator bT e for a single elec-
tron as well as the electron potential VNe due to the attraction of all
the nuclei. Further,

EC ¼
1
2

Z
qð1;1Þ 1

r12
qð2;2Þds1ds2; ð5Þ

is the interaction of the molecular electron density with itself and

EXC;KS ¼
Z

EXC;KS½qð1;1Þ�ds1; ð6Þ

is the exchange correlation energy expressed as a functional of
qð1;1Þ.

The set of spin-orbitals fwið1Þ; i ¼ 1; occg making up the opti-
mized ground state Slater determinant satisfy the one-electron
KS-equationbF KSð1Þwið1Þ ¼ eiwið1Þ; ð7Þ

where

bF KSð1Þ ¼ ĥ0 þ
Z

qð2;2Þ 1
r12

ds2 þ VXCð1Þ; ð8Þ

and the exchange correlation potential is given as

VXC ½q� ¼
dEXC

dqð1;1Þ : ð9Þ

Eq. (8) has as solutions the optimized set of ‘‘occupied” spin-
orbitals fwið1Þ; i ¼ 1; occg as well as a set of ‘‘virtual spin-orbitals
fwað1Þ; a ¼ 1; virg. We can consider the combined set of spin-orbi-
tals fwpð1Þ; p ¼ 1; vir þ occg as being orthonormal. It further holds
that

FKS
rs ¼

Z
w�r ð1ÞbF KSð1Þwsð1Þds1 ¼ drser : ð10Þ

We shall now transfer a single electron from an occupied orbital
wi situated completely on D to a virtual orbital wa situated com-
pletely on AC, thus the KS-Slater determinant representing our ex-
cited state can be represented by

Wi!a ¼ w1w2 . . . wawj . . . wn

�� ��: ð11Þ

For simplicity let wi and wa be of the same spin. In this case the
KS-determinant Wi!a represents a 50–50 mixture of a singlet and a
triplet. We shall not be concerned about singlet–triplet splittings
since the exchange integral responsible for such a splitting is van-
ishing for large R. In fact the charge transfer state i! a is better de-
scribed as two separated molecules D+ and AC�, each in a doublet
state.

2.2. Formulation of a simple model for charge transfer within TD-DFT

The TD-DFT scheme [1,2] is based on response theory in which
changes in the ground state is described by a coupling of all occu-
pied orbitals with all virtual orbitals fwað1Þ; a ¼ 1; virg thus con-
structing a new KS-determinant [10]

W0½U� ¼ w01w
0
2 . . . w0iw

0
j . . . w0n

��� ���; ð12Þ

where

w0ið1Þ ¼ wið1Þ þ
X

a

Uaiwað1Þ; ð13Þ

one can after normalization of W0½U� evaluate a KS-density matrix
q0½U� from which it is possible to evaluate the corresponding energy
E0KS½U�. In TD-DFT this energy is evaluated just to second order in U
as [10]

E0KS½U� ¼ EKS½0� þ 1
2

U� Uð Þ AKS BKS

BKS AKS

 !
U

U�

� �
þ Oð3Þ½U�: ð14Þ

In deriving Eq. (14) use has been made of Eq. (6) and the expan-
sion in terms of functional derivatives [10]

EXC ½qð0Þ þ Dq� ¼ EXC ½qð0Þ� þ
Z

dEXC ½q�
dq

� �
ð0Þ

Dqds

þ 1
2

Z
d2EXC ½q�

d2q

 !
ð0Þ

Dq2ds ¼ EXC ½qð0Þ�

þ
Z

VXC ½qð0Þ�Dqdsþ 1
2

fXC ½qð0Þ�Dq2dsþ Oð3Þ½U�

ð15Þ

where fXC ½qð0Þ� is referred to as the exchange correlation kernel and
qð0Þ in our case is the ground state density corresponding to the KS-
determinant of Eq. (1).

Further in Eq. (14)

AKS
ai;bj ¼ dabdijðea � eiÞ þ KKS

ai;bj; BKS
ai;bj ¼ KKS

ai;bj; ð16Þ

with

KKS
rs;tq ¼ KH

rs;tq þ KKS;XC
rs;tq

¼
Z

w�r ð1Þwsð1Þ
1

r12
wið2Þw�qð2Þds1ds2

þ
Z

w�r ð1Þwsð1ÞfXCðqð0ÞÞwtð1Þw�qð1Þds1ds2 ð17Þ

The combined matrix in Eq. (14) with the elements AKS
ai;bj and

BKS
ai;bj is often referred to as the electronic ground state Hessian

[10]. It should hopefully not cause any confusion that the A and
B matrices in some TD-DFT formulations [1,2] correspond to the
negative of the two electronic Hessian matrices defined in Eq.
(16). In the simplest form of TD-DFT, which we shall adopt here,
one introduces the Tamm–Dancoff approximation [16] by setting
B to zero in Eq. (14). This approximation has proven to be excellent
and to have little influence on charge transfer excitation energies
calculated by TD-DFT. By requesting that E0KS½U� with B = 0 be sta-
tionary with respect to any real variation of U one obtain within
the constraint UþU ¼ 1. We obtain in this way the well known
TD-DFT eigenfunction equation

AKSUðIÞ ¼ kIU
ðIÞ; ð18Þ

based on the TD-approximation. Here kI is the excitation energy for
transition I.

In the case of our simple charge transfer model where the elec-
tron moves from wið1Þ to wað1Þ we get that Uib ¼ dijdab and
kai ¼ AKS

ai;ai ¼ ea � ei þ Kai;ai� .

2.3. Qualitative and quantitative problem with TD-DFT for charge
transfer

It has been shown by several groupsm [5–9] that charge trans-
fer excitation energies calculated by TD-DFT can be too small by
several eV’s. Also several elegant investigations have shown that
the analytic form of kai is qualitatively incorrect. This can be dem-
onstrated by bringing D and Ac to infinite separation ðR!1Þ and
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