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a b s t r a c t

We present ab initio time-dependent density-functional calculations for the optical properties of mole-
cules, atomic clusters, functionalized carbon nanotubes, and metal-nanotube heterostructures. Our calcu-
lations are carried out in the framework of a real-space higher-order finite difference method combined
with the pseudopotential approximation. In this method, the Kohn–Sham equations for electronic states
are solved self-consistently on a real-space three-dimensional Cartesian grid without the use of explicit
basis functions. The time-dependent density-functional linear response formalism is applied to calculate
the excited-state properties of the water molecule, analyze the optical spectra of potassium atoms and
clusters adsorbed on graphene and carbon nanotubes, study the assembly of organic molecules to carbon
nanotubes and compute the Stokes shifts in hydrogenated silicon clusters. The results of our calculations
show that the time-dependent density-functional computational approach is flexible and can be success-
fully applied to a variety of different physical problems.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental problem in nanophysics is predicting the behav-
ior of materials confined to small dimensions. The influence of size
and geometric shape on the properties of matter become extre-
mely important when the spatial dimensions of the system are re-
duced to the nanometer scale. Examples of nanoscale systems
include atomic clusters, nanocrystals, quantum dots, nanotubes,
nanowires, thin films, and other similar structures [1]. Nanostruc-
tures are projected to be the core elements of the next generation
of technological materials that have the potential to revolutionize
the design of computer chips, video screens and displays, solid-
state lasers, solar cells, light detectors, and chemical sensors. It is
now well recognized that the physics of nanoscale systems is dom-
inated by the interacting electrons in an external confining poten-
tial [2]. Understanding these interactions is critical to the
fabrication of nanocomposite materials with precisely controlled
electronic and optical characteristics.

Theoretical studies of nanoscale systems presents major chal-
lenges to computational methods employed in quantum chemistry
and condensed matter physics. The challenges are mainly related
to the structural complexity and lack of three-dimensional period-

icity in these systems. The complex structure and composition of
nanomaterials necessitates the use of efficient numerical tech-
niques combined with massively parallel computing. While com-
putational methods for the ground-state properties of materials
are relatively well established, calculations for the excited-state
properties of nanoscale systems remain computationally demand-
ing. When electronic excitations are explicitly included in the com-
putational formalism, the difficulty of the calculation increases
manifold. Traditionally, accurate calculations for optical excita-
tions rely on the use of highly sophisticated techniques, such as
the configuration interaction method [3], or quantum Monte Carlo
simulations [4,5]. While these methods describe electronic excita-
tions correctly, their application to complex nanostructures is con-
strained by high computational cost. The rapid advancement of
nanotechnology has shifted the focus of materials research from
the continuum solid state to nanoscale systems and emphasized
the need for the development of relatively simple and accurate
theoretical methods capable of predicting the optical properties
of complex nanostructures from first principles. In this regard,
two theoretical approaches have emerged: one is a method based
on computing the frequency-dependent polarizability in the
framework of time-dependent density-functional theory (TDDFT)
[6–9] and the other is the Green function formalism based on solv-
ing the Bethe–Salpeter equation (BSE) [10] within the GW approx-
imation [11]. While the GW and BSE methods have proved to be
successful in predicting the band gaps and optical excitations in
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periodic systems, the efficiency of this formalism in application to
large non-periodic systems is still being tested [12–20].

In this paper, we present a brief overview of the TDDFT formal-
ism based on a linear response method in the frequency domain
[21,22]. Within this method, a density-functional expression for
the dynamic polarizability is obtained by analyzing the system re-
sponse to an external periodic perturbation. The energies and oscil-
lator strengths of electronic transitions are computed from the
poles and residues of the dynamic polarizability [22]. The linear re-
sponse TDDFT approach is applied to calculate the optical proper-
ties of various nanoscale systems, including inorganic and organic
molecules, semiconductor nanoclusters, functionalized carbon
nanotubes, and metal-nanotube heterostructures.

2. Computational methods

An ab initio method based on density-functional theory (DFT)
[23,24] combined with the pseudopotential approximation [25]
represents a quantum mechanical computational technique well
suited for medium and large-scale modeling of nanomaterials.
The pseudopotential method effectively reduces the total number
of particles in the system by solving the quantum mechanical
problem for the valence electrons only [25]. The density-functional
formalism transforms the many-body Schrödinger equation into a
set of single-electron Kohn–Sham equations given by1
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In Eq. (1), the true potential of each ion at Ra is replaced by a
pseudopotential vionðr� RaÞ accounting for the interaction of va-
lence electrons with core electrons and nuclei, the Hartree poten-
tial, vH½q�ðrÞ, describes the electrostatic interactions among
valence electrons, the exchange–correlation potential, vxc½q�ðrÞ,
represents the non-classical part of the Hamiltonian, and qðrÞ is
the charge density. The single-electron Kohn–Sham eigenvalues
�i and eigen wave functions wiðrÞ in Eq. (1) pertain to valence elec-
trons only.

The non-local ionic pseudopotential simulates the angular
momentum dependent interaction between the valence and core
electrons. In practical computational schemes, the Kleinman–
Bylander [26] form of the non-local pseudopotential is usually
employed,

vionðr�RaÞwiðrÞ¼ vlocalðr�RaÞwiðrÞþ
X
l;m

GlmDvlðr�RaÞ/lmðr�RaÞ;

ð2Þ

where vlocal is the local ionic pseudopotential, Dvl ¼ vl � vlocal is the
difference between the local potential and the potential component
with the angular momentum l;/lm are the atomic pseudo wave
functions, and the projection coefficients Glm are calculated as

Glm ¼
h/lmjDvljwii
h/lmjDvlj/lmi

: ð3Þ

The exchange–correlation potential is approximated by a parame-
trized analytical expression of the charge density. Among the com-
mon approximations for the exchange–correlation functional are
the local-density approximation (LDA) [24,27] and the generalized
gradient approximation (GGA) [28,29], although new types of hy-
brid functionals, such as B3LYP [30], are becoming increasingly pop-
ular. Owing to the non-linear nature of the exchange–correlation
functional, the accuracy of the approximation can be improved by

correcting the analytical formula to account for the core electronic
density. The exchange–correlation potential is then evaluated as a
functional of the core-corrected charge density [31],

qðrÞ ¼ qvðrÞ þ
X

a

qcoreðjr� RajÞ; ð4Þ

where qcoreðjr� RajÞ is a fixed partial correction for the charge den-
sity of core electrons and qvðrÞ is the charge density of valence elec-
trons calculated as

qvðrÞ ¼
X

i

nijwiðrÞj
2
; ð5Þ

where wiðrÞ are single-electron wave functions and ni are occupa-
tion numbers.

The combination of the Kohn–Sham scheme, exchange–correla-
tion approximation, and pseudopotential method reduces the
overall computational cost without significant loss of accuracy.
Furthermore, calculations performed in the framework of the DFT
method do not require any adjustable external parameters [32].
The absence of structure and material-dependent parameters and
a relatively low computational cost makes the ab initio DFT ap-
proach applicable to complex nanosystems containing hundreds
or, in some cases, thousands of atoms [33,34].

The central theorem of DFT states that the external potential
and the ground-state energy of a system of interacting electrons
are uniquely determined by the ground-state charge density [23].
However, the original formulation of the DFT formalism has been
restricted to the time-independent case only. A proper treatment
of electronic excitations is not possible within the time-indepen-
dent framework. This limitation has led to the development of
time-dependent density-functional theory (TDDFT), which extends
the central DFT theorem to time-dependent phenomena [6–9].
The TDDFT formalism can be used to calculate absorption spectra
and predict optical properties of nanostructured materials. Simi-
larly to time-independent DFT developed by Kohn and Sham,
TDDFT reduces the many-electron problem to a set of self-consis-
tent single-electron equations,
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However, the single particle wave functions, wiðr; tÞ, and the effec-
tive potential, veff ½q�ðr; tÞ in Eq. (6) explicitly depend on time. The
effective potential is given by

veff ½q�ðr; tÞ ¼
X

a

vionðr� RaÞ þ
Z

qðr0; tÞ
jr� r0j dr0 þ vxc½q�ðr; tÞ: ð7Þ

The three terms on the right side of Eq. (7) describe the external io-
nic potential, Hartree potential, and the exchange–correlation po-
tential, respectively. The time-dependent charge density is
defined as qðr; tÞ ¼

P
inijwiðr; tÞj

2, where ni are occupation numbers.
Electronic excitations can be calculated in the framework of

TDDFT by considering a linear response to an external periodic per-
turbation [21,22]. In this approach, the linear response formalism
is used to derive a density-functional expression for the dynamic
polarizability. The excitation energies XI , which correspond to
the poles of the dynamic polarizability, are obtained from the solu-
tion of an eigenvalue problem

Q FI ¼ X2
I FI; ð8Þ

where the matrix Q is given by

Qijr;kls ¼ di;kdj;ldr;sx2
kls þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kijrxijr

p
Kijr;kls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kklsxkls

p
: ð9Þ

In this equation, the indices i; j, and r (k; l, and s) refer to the
space and spin components, respectively, of the unperturbed static1 Atomic units ð�h ¼ e ¼ m ¼ 1Þ are used throughout this chapter.
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