Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/theochem

Ab initio study of the molecular vibrations and electronic structure of the X, B, D and $F^2\Sigma^+$ states of AlO

Nobumitsu Honjou

Oita University, 700 Dannoharu, Oita 870-1192, Japan

ARTICLE INFO

Article history: Received 9 August 2009 Accepted 17 September 2009 Available online 26 September 2009

Keywords: AIO Ab initio Configuration interaction Vibrational levels Avoided crossing Electronic structure

1. Introduction

The electronic states of the aluminum monoxide (AlO) molecule have been examined in a number of experimental [1–11] and theoretical [12–19] studies. Seven electronic states of $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, $C^2\Pi$, $D^2\Sigma^+$, $E^2\Delta$, and $F^2\Sigma^+$ have been identified experimentally [2,3]. Extensive studies have provided accurate molecular constants of the $X^2\Sigma^+$ and $B^2\Sigma^+$ states [9–11]. Of higher excited ${}^2\Sigma^+$ states, $D^2\Sigma^+$ was observed in the emission bands $D^2\Sigma^+ - X^2\Sigma^+$ [4] and $D^2\Sigma^+ - A^2\Pi$ [5,8], and $F^2\Sigma^+$ in an emission band $F^2\Sigma^+ - A^2\Pi$ [6]. Theoretical studies have derived the potential energy curves (PECs) [18,19] and electric dipole moments [18] for the D and F states, and transition moments for the D–X, D–A, and F–A bands [18].

Information on the $D^2\Sigma^+$ and $F^2\Sigma^+$ states nevertheless remains limited. For example, no vibrational constants of the $F^2\Sigma^+$ state are known experimentally. A theoretical study [18] has indicated that the $D^2\Sigma^+$ state forms an avoided crossing with the $F^2\Sigma^+$ state for internuclear distance close to 3.5 a_0 , near to the $F^2\Sigma^+$ potential well minimum at 3.4325 a_0 [2], but no studies have been reported on the effects of the avoided crossing on the vibrational levels of the $D^2\Sigma^+$ and $F^2\Sigma^+$ states. The electronic structure for the F state at and around its well minimum has not been published in detail, nor the D and F states in the avoided crossing region.

The present work studies the molecular vibrations and electronic structure of the X, B, D, and $F^2\Sigma^+$ states of AlO. *Ab initio* state-averaged complete-active-space self-consistent-field (SA-CASSCF)/multi-reference configuration interaction (MRCI) calculations and

ABSTRACT

Molecular vibrations and electronic structure of the $X^2\Sigma^+$, $B^2\Sigma^+$, $D^2\Sigma^+$, and $F^2\Sigma^+$ states of AlO are studied by carrying out *ab initio* configuration interaction calculations and molecular vibration calculations using accurate potential energy functions. An avoided crossing between the $D^2\Sigma^+$ and $F^2\Sigma^+$ potential energy curves occurs in the neighborhood of 4.0 a_0 and results in irregular vibrational levels of the D and $F^2\Sigma^+$ states. The vibrational constants for the $F^2\Sigma^+$ state are predicted from the vibrational levels not involved in the irregularity. Configuration mixing is important in describing the B, D, and $F^2\Sigma^+$ states. The $F^2\Sigma^+$ state at and around its well minimum and the D and $F^2\Sigma^+$ states in the avoided crossing region are characterized in terms of their main configurations and dipole moment functions.

© 2009 Elsevier B.V. All rights reserved.

THEOCHEN

molecular vibration calculations were performed for the $1-4^2\Sigma^+$ states, adopting the CASSCF procedure used by Lengsfield and Liu [15] for the calculations of the X² Σ^+ and B² Σ^+ states. The X, B, D, and F² Σ^+ states were characterized according to the calculated PECs, vibrational energies, spectroscopic constants, dipole moments, and MRCI wavefunctions.

Irregularities were found in both vibrational levels of the $D^2\Sigma^+$ and $F^2\Sigma^+$ states due to the avoided crossing. Vibrational constants of the F state were determined from the vibrational levels not involved in the irregularity. The $F^2\Sigma^+$ state in the neighborhood of its well minimum keeps nearly constant dipole moment, implying a transfer of negative charge from O to Al. The D and F states in the avoided crossing region are described by the change in the mixing among ion-pair and neutral configurations in their MRCI wavefunctions, with internuclear distance.

2. Theoretical approach

2.1. Configuration interaction calculations

We used Slater-type functions (STFs) centered on each nucleus as basis functions. The basis set consists of an (8s6*p*) set augmented with (1*s*1*p*4*d*1*f*) for aluminum atom and a (6*s*4*p*) set augmented with (1*s*1*p*2*d*1*f*) for oxygen atom. The types and exponents (ζ) for the aluminum (8*s*6*p*) set were taken from the work of McLean et al. [20], and those for the oxygen (6*s*4*p*) set were from the work of Clementi and Roetti [21]. For aluminum atom, four 3*d*-type STFs (ζ = 1.840,1.062,0.613,0.354) were added to describe both the occupied orbitals for excited states and polarization. The

E-mail address: n.honjou@helen.ocn.ne.jp

^{0166-1280/\$ -} see front matter \circledcirc 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.theochem.2009.09.041

 $\zeta = 1.840$ was taken from Ref. [20] and the remaining three were obtained through dividing 1.840 by 1.732, 3.000, and 5.196 (i.e. an even-tempered set of the ratio $\sqrt{3}$). One 4*f*-type STF ($\zeta = 1.17$) was added to describe the polarization, whose ζ value was determined by taking geometric means between the ζ values of 1.44 and 0.95 given in Ref. [15]. For oxygen atom, two 3*d*-type STFs ($\zeta = 2.0, 1.0$) which were taken from Ref. [22] and one 4*f*-type STF ($\zeta = 2.5$) which were from Ref. [15] were added as polarization functions. The (1s1*p*) sets used to describe diffuse orbitals were the 3*s*-type (0.8) and 2*p*-type (0.4) STFs for aluminum atom, and the 2*s*-type (0.8) and 2*p*-type (0.6) STFs for oxygen atom. Their values were obtained by dividing the smallest ζ value of the 3*s*- (or 3*p*-) type STFs of the (8s6*p*) set by 2 for aluminum atom and that of the 2*s*- (or 2*p*-) type STFs of the (6s4*p*) set by 2 for oxygen atom.

Orbital sets to be used for configuration interaction (CI) calculations (CI orbitals) were obtained by means of state-averaged complete-active-space self-consistent-field (SA-CASSCF) calculations [23-28] and natural orbital transformations. The core orbitals for both the CASSCF and CI calculations consist of the innermost five σ and one π orbitals. All the configuration state functions (CSFs) with the ${}^{2}\Sigma^{+}$ symmetry that were generated by distributing seven electrons among the 6–9 σ and 2–4 π active orbitals were taken into account in the SA-CASSCF calculations. The active space includes all orbitals correlating with Al 3s, 3p and O 2p, 3p orbitals, which Lengsfield and Liu [15] used in their CASSCF calculations on the $X^2\Sigma^+$ and $B^2\Sigma^+$ states to take into account both the O⁻ 2p in-out correlation and the Al 3s-3p near degeneracy effect. The total numbers of CSFs for the SA-CASSCF calculation (CAS CSF) are 1556 for the ${}^{2}\Sigma^{+}$ symmetry. The external orbital space is made up of the 10–36 σ and 5–20 π orbitals. The value of the SA-CASSCF weight vector (1/4) was chosen so that it specifies equal contribution of each of the lowest four states to the averaged energy functional.

For correlation energy correction, we carried out multi-reference configuration interaction (MRCI) calculations to obtain accurate total energies for the $1-4^2\Sigma^+$ states. Reference configurations include all the configurations of the CAS space. The CSFs include the CSFs for the SA-CASSCF calculations (CAS CSFs) and the CSFs of both single and double excitations from the CAS CSFs into the external orbital space of $10-30\sigma$, $5-18\pi$, $1-8\delta$, and $1-2\phi$, where the $31-36\sigma$ and $19-20\pi$ orbitals were treated as the core complements.

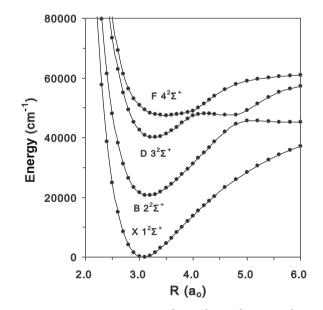
The SA-CASSCF and MRCI calculations were repeated to obtain potential energy curves at 23 internuclear distance (R) points in the range 2.2–4.4 a_0 at intervals of 0.1 a_0 and 8 R points in the range 4.6–6.0 a_0 at intervals of 0.2 a_0 . The ALCHEMY II computer program package [29] was used for the CASSCF and CI calculations [30].

2.2. Molecular vibration calculations

Vibrational term values G(v) and wavefunctions were computed for AlO $1-4^2\Sigma^+$ (vibrational quantum number v = 0-18) in the same way as our previous study on the F₂ [31] and CS⁺ [32]. The onedimensional Schrödinger equation for the vibration of a diatomic molecule with no rotational energy was solved numerically using potential energy functions (PEFs) for AlO $1-4^2\Sigma^+$ which were fed to the equation as the cubic natural spline curves fitted to the MRCI energies for 2.2–6.0 a_0 . A computer program constructed by the author [31–33] was used for the computations of the G(v) values and vibrational wavefunctions.

3. Results and discussion

3.1. Potential energy curves and spectroscopic constants


Fig. 1 shows the MRCI potential energy curves (PECs) for the $1-4^2\Sigma^+$ states of AlO. The $3^2\Sigma^+$ state is found to have a double

potential well. The electronic term values T_e and the equilibrium internuclear distances R_e of the $1-4^2\Sigma^+$ were determined by cubic natural spline (CNS) fitting to the MRCI energies. The vibrational constant ω_e and the anharmonicity constant $\omega_e x_e$ were obtained from a Dunham series expansion of vibrational term value G(v)for the vibrational quantum number v [34] as in our previous work [32], except for the outer-well of the $3^2\Sigma^+$ state, for which ω_e value was determined by the CNS fitting to the MRCI energies. The results are listed in Table 1, together with the experimental values [2,6].

Experimental values are available for T_e , ω_e , $\omega_e x_e$, and R_e of the $X^2\Sigma^+$, $B^2\Sigma^+$, and $D^2\Sigma^+$ states, and T_e [2] (T_{00} [6]) and R_e [2] of the $F^2\Sigma^+$ state. The theoretical ω_e and $\omega_e x_e$ values for the $1^2\Sigma^+$, $2^2\Sigma^+$, and $3^2\Sigma^+$ states were determined from the calculated G(v) values for the observed vibrational states ($X^2\Sigma^+ v = 0-6$ [9], $B^2\Sigma^+ v = 0-9$ [9], and $D^2\Sigma^+ v = 0-5$ [5]) using the Dunham series expansion of G(v) up to the fourth-order term of (v + 1/2). The MRCI values of the $1^2\Sigma^+$, $2^2\Sigma^+$ and $3^2\Sigma^+$ (inner-well) states agree excellently with the experimental values of the X, B, and D states, respectively, to within 185 cm⁻¹ for T_e , 25 cm⁻¹ for ω_e , 0.7 cm⁻¹ for $\omega_e x_e$, and 0.011 Å for R_e . The values of T_e , ω_e , and R_e for the D $3^2\Sigma^+$ outer-well are predicted in Table 1. Vibrational levels of the D²\Sigma^+ double potential well will be considered in Section 3.2.

The MRCI T_e (T_{00}) and R_e values of the $4^2\Sigma^+$ state agree well with the experimental values of the F state [2], to within 160 cm⁻¹ (72 cm⁻¹) and 0.015 Å, indicating that the $4^2\Sigma^+$ PEC at and around its R_e is accurate. The present calculations found an irregularity in the separation values of successive vibrational levels of the F $4^2\Sigma^+$ state. The vibrational constants for the $4^2\Sigma^+$ state of values 451 cm^{-1} for ω_e and 8.7 cm^{-1} for $\omega_e x_e$ were determined from the calculated G(v) values for v = 0-2 using the Dunham series expansion of G(v) up to the second-order term of (v + 1/2). Our ω_e value is smaller by 399 cm⁻¹ than the theoretical value reported previously [18]. More detail about the determination of the $4^2\Sigma^+$ vibrational constants, taking into account the irregularity, is given in Section 3.2.

The $D^2\Sigma^+$ and $F^2\Sigma^+$ PECs are close in value to a separation 0.19 eV at internuclear distance $R = 4.0 a_0$; the $D^2\Sigma^+$ PEC has a barrier top at 4.229 a_0 ; the $F^2\Sigma^+$ PEC bends upward around 4.1 a_0 . These result from an avoided crossing between the D and F states

Fig. 1. Potential energy curves for the X $1^2\Sigma^+$, B $2^2\Sigma^+$, D $3^2\Sigma^+$, and F $4^2\Sigma^+$ states which were drawn by using the MRCI energies. The MRCI total energy value for the $1^2\Sigma^+$ state at internuclear distance *R* = 3.1 *a*₀ is -316.998378 hartree.

Download English Version:

https://daneshyari.com/en/article/5417087

Download Persian Version:

https://daneshyari.com/article/5417087

Daneshyari.com