ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Structure: THEOCHEM

journal homepage: www.elsevier.com/locate/theochem

Dehydrohalogenation versus dehydrogenation in reaction of Au⁺ with CH₃Cl: A theoretical study

Tao Hong Li^{a,*}, Xiang Yi Liu^a, Shi Wen Yu^b, Ning Zhao^a, Shou Qing Liu^a, Xin Yu Ao^a, Xiao Guang Xie^c

ARTICLE INFO

Article history: Received 22 October 2008 Received in revised form 27 November 2008 Accepted 2 December 2008 Available online 13 December 2008

Keywords:
Dehydrohalogenation
Dehydrogenation
Gold cation
Methyl chloride

ABSTRACT

The reaction of Au^+ (1S , 3D) with CH_3CI has been investigated at B3LYP and CCSD(T) levels of theory. The reaction pathways of both HCI- and H_2 -elimination were identified on the singlet surface, whereas only H_2 -elimination pathway was found on the triplet surface. The calculated results indicate that HCI-elimination is energetically much more favorable than H_2 -elimination. Two reaction pathways were identified for HCI-elimination: (a) $Au^++CH_3CI \rightarrow CI-Au^+-CH_3 \rightarrow CIAuH^+-CH_2 \rightarrow (HCI)-Au^+-CH_2 \rightarrow HCI+AuCH_2^+$; (b) $Au^++CH_3CI \rightarrow H-Au^+-CH_2CI \rightarrow Au^+-CH_2(HCI) \rightarrow HCI+AuCH_2^+$. Pathway a has activation energy barrier of 25.2 kJ/mol at CCSD(T) level, while pathway b is barrierless. In addition, formation of other possible products ($AuCI^+$, AuCI, AuH^+ and AuH) has also been discussed. All the results of this study well rationalized the experimental observations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Halogenated methanes are the simplest substrates for studies on the competition between the C-H and C-X (X=F, Cl, Br and I) bond activation by metal ions. Many investigations of gas phase reactions of metal cations with methyl halides have provided insight into C-X bond activation processes [1-7]. In these studies, only halogen-atom transfer products were observed for the reactions of group 2-5 and lanthanide cations with methyl fluoride [1,5], whereas only HCl- and HBr-elimination channels were reported for the reactions of Au⁺ with CH₃Cl [2] and CH₃Br [2,6]. Recently, by using inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer, Bohme and co-workers surveyed the room-temperature reactions of CH₃F with 46 atomic transition metal and main-group cations [8]. The results of this study show that the F-transfer channel is the only product channel for early transition metal cations, whereas such product channel was not observed for late metal cations. Instead, H2 and HF eliminations were observed for some late 5d transition metal cations, such as Os⁺, Ir⁺ and Pt⁺. Again, for Au⁺, only HF-elimination was observed. Very recently, Bohme et al. theoretically investigated the reactions of CH₃Cl and CH₃F with Pt⁺ [9]. The results of their study show that such reactions are typical multi-channel and multi-step reactions. The calculated reaction mechanisms and potential energy surfaces indicate that H₂-elimination is energetically more favorable than HX-elimination. Based on their study, we speculate that the H₂-elimination channel should also be possible for Au⁺ when it reacts with methyl halides, but this channel may have high kinetic activation energy barrier and cannot be observed at lowenergy condition. To elucidate the reaction of Au⁺ with CH₃X and to compare it with the case of Pt⁺, herein, we explored the reaction of Au⁺ with CH₃Cl. This reaction was first investigated by Wilkins et al., using Fourier transformation mass spectrometry in 1987 [2]. In their experiment, the dominant product channel was observed to be HCl-elimination (96%), while the Au(CH₃Cl)⁺ association complex was a minor channel (4%). In 2002, Schwarz et al., re-examined this reaction by using Fourier transformation ion cyclotron (FTICR) spectrometer [10]. Similarly, HCl-elimination was also found as dominant channel (95%), but minor formation of AuH (5%) was also observed. In addition, some possible complexes formed in the reaction have been theoretically calculated, but the reaction mechanism and potential energy surfaces have not been investigated. Wilkins et al., proposed two possible mechanisms for the elimination of HCl [2]:

(1)
$$Au^++CH_3CI \rightarrow CI-Au^+-CH_3 \rightarrow CIAuH^+-CH_2 \rightarrow (HCI)-Au^+$$

- $CH_2 \rightarrow HCI+AuCH_2^+$

In the first mechanism, Au^+ inserts into the C–Cl bond, followed by the migration of an α -hydrogen onto the metal and subsequent

^a Department of Chemistry, Southwest Forestry University, Kunming Yunnan 650224, PR China

^b Department of Chemistry, Qujing Normal University, Qujing 650011, PR China

^c Department of Chemistry, Yunnan University, Kunming 650091, PR China

^{*} Corresponding author. E-mail address: lith.cool@163.com (T.H. Li).

⁽²⁾ $Au^++CH_3CI \rightarrow H-Au^+-CH_2CI \rightarrow CIAuH^+-CH_2 \rightarrow (HCI)-Au^+$ - $CH_2 \rightarrow HCI+AuCH_2^+$

loss of HCl, giving $AuCH_2^+$ ions. In the second mechanism, Au^+ inserts into the C–H bond, followed by an α -Cl migration and loss of HCl. The two mechanisms have been theoretically confirmed by the study on the reactions of Pt^+ with CH_3F and CH_3Cl . In fact, mechanism (1) was also found in our recent study for the reactions of main group cations As^+ and Bi^+ with CH_3F [11]. Our present calculations also confirmed the mechanism (1) for the case of Au^+ . However, mechanism (2) was not identified. Instead, we found another mechanism which is also initiated by C–H bond insertion, but followed by H-transfer back to Cl atom and subsequent loss of HCl from carbon atom, not from the metal center. In this study, our calculations provided an almost complete understanding of the entitled reaction.

2. Computational method

The hybrid density functional theory (DFT) method B3LYP [12,13] was employed to fully optimize the geometries of all the stationary points. The standard all-electron basis set 6-311+G** [14] was used for C, H and Cl atoms. The recently introduced correlated consistent basis set aug-cc-pvdz-pp of Peterson et al. [15] was used for Au⁺. The aug-cc-pvnz-pp (n=D, T, Q, 5) basis sets employ a small-core relativistic pseudopotential where the 5s, 5p, 5d and 6s electrons of Au⁺ are treated explicitly in the valence space. These basis sets have been shown to be of high quality when they were used on heavy atoms [16]. Harmonic vibration frequencies were calculated at the same level, both to characterize the stationary points and to estimate the contributions of zero-point vibration to relative energies. The intrinsic reaction coordinate (IRC) calculations were performed to track the reaction pathways. To obtain more reliable energetics, single point calculations were performed using CCSD(T) [17] method with the same basis and the relative energies obtained at this level were also corrected with the zeropoint energies calculated at B3LYP level. It should be pointed out that the basis set superposition errors (BSSE) were not considered in the above calculations, since BSSE corrections are generally necessary for some systems in which weak interactions, such as hydrogen-bond or non-bonding molecular interactions, are concerned. For reaction systems, especially when large basis sets are used, the BSSE can be neglected. All calculations were carried out with Gaussian98 program package [18].

3. Results and discussions

Table 1 lists the bond dissociation energies (BDEs) [19,20] and the enthalpies of formation [9] of the relevant neutral molecules and ions. The thermochemistries of some product channels are deduced from these data and also list in Table 1 to compare with the calculated results. Apparently, compared with the results obtained at B3LYP level, the results obtained at CCSD(T) level agree better with the deduced data. One may note that the biggest difference between the deduced and our calculated results arises from the formation of ${\rm CH_3} + {\rm AuCl}^+$. It should be pointed out that the bond energy for ${\rm Au}^+$ –Cl is not an experimental result, but a previously

calculated value using CCSD(T) method with Stuttgart pseudo-potential basis set [10].

To fully understand the reaction of Au^+ with $\mathrm{CH_3Cl}$, the reaction pathways were searched for both singlet ground state $(5d^{10}, ^1\mathrm{S})$ and triplet exited state $(5d^96\mathrm{s}^1, ^3\mathrm{D})$ of Au^+ . On the singlet surface, two reaction pathways leading to HCl-elimination and one pathway leading to $\mathrm{H_2}$ -elimination were identified. They are demonstrated in Fig. 1 as a, b and c, respectively. On the triplet surface, only $\mathrm{H_2}$ -elimination pathway was found. The geometries of the stationary points on this surface are shown in Fig. 2. The potential energy profiles of the above pathways obtained at CCSD(T) level are given in Figs 3 and 4.

3.1. Elimination of HCl

3.1.1. Reaction pathway a on singlet surface

The initiation of this pathway is the association of Au^+ with the chlorine atom of $\mathrm{CH_3Cl}$ to form the complex $^1\mathrm{IM1}$ which lies below the reactants by 196.1 kJ/mol. As shown Table 1, this complex is the most stable intermediate on all the surfaces and this is consistent with the calculation of Schwarz et al. [10]. $^1\mathrm{IM1}$ has $\mathrm{C_s}$ symmetry and the C–Cl bond stretches from 1.806 Å in free $\mathrm{CH_3Cl}$ to 1.859 Å. The Mulliken charges on Au and Cl are 0.45 and 0.44, respectively. This implies significant electron-transfer from chlorine to Au atom. NBO analysis for this complex shows a strong donor–accepter interaction between the empty 6s orbital of Au and the lone-paired $\mathrm{p_x}$ orbital of Cl. Therefore, besides the electrostatical interaction, the donor–accept interaction should also largely accounts for the remarkable stability of such complex.

The next step of this pathway is the insertion of Au^+ into the C–Cl bond to form the insertion intermediate 1IM2 which has relative energy of -103.8 kJ/mol, with respect to the entrance reactants. This step undergoes through the insertion transition state 1TS1 . As 1TS1 locates below the reactants by 50.7 kJ/mol, the C–Cl bond insertion is kinetically barrierless process. NBO analysis for 1TS1 indicates that the breakage of C–Cl bond can be attributed to the strong back-donation of 5d lone-paired electrons of Au^+ to the anti-bonding orbital of C–Cl bond and such interaction can be denoted as $5d_{xv}(Lp) \rightarrow \sigma*(C-Cl)$.

Flowing 1 IM2, an α -hydrogen can migrate from the carbon atom to Au atom, via 1 TS2, to form the structure 1 IM3 in which both the chlorine and hydrogen atom locate on the metal center. As shown in Fig. 1, 1 TS2 lies above the reactants by 17.3 kJ/mol. The higher energy of this transition state than 1 TS1 is not surprising, because it involves formation of multiple bonds. The geometry of 1 IM3 is so close to that of 1 TS2 that the CCSD(T) calculation placed 1 IM3 very slightly above 1 TS1 in energy, although B3LYP optimization defined it as a local minimum.

Via 1 TS3, 1 IM3 can convert to 1 IM4 with a small barrier of 7.1 kJ/mol. Since 1 TS3 has the higher energy than both 1 TS1 and 1 TS2, this step is the rate-determining step and the activation barrier of this step is 25.2 kJ/mol, relative to the entrance reactants. In 1 IM4, Au atom bonds to CH $_2$ by a π bond and a σ bond and both of them are doubly occupied. Although the Au–Cl distance is long as 2.445 Å,

Table 1The available bond dissociation energies (BDEs, k]/mol), enthalpies of formation ($\Delta_t H^0$, k]/mol) at 298 K, the deduced and calculated reaction enthalpies ($\Delta_r H$, k]/mol).

Bonds	BDE	Species	$\Delta_{ m f} H^{0a}$	Products	$\Delta_{\mathrm{r}}H$	$\Delta_{ m r} H_{ m B3LYP}$	$\Delta_{\rm r} H_{\rm CCSD(T)}$
H-CH ₂ Cl	420.8 ^a	CH₃Cl	-84.0	¹ AuCH ₂ ⁺ + HCl	-13.6	1.8	-7.6
Cl-CH ₃	351.5 ^a	CH ₂	387.9	² AuCl ⁺ +CH ₃	220.5	171.5	168.8
Au ⁺ -CH ₂	392.9 ^a	HCl	-92.6	² AuCl ⁺ +CH ₂ Cl	210.6	202.0	212.5
Au ⁺ -Cl	131.0 ^b	CHCl	334.4	-	-	-	-
Au ⁺ –H	210.2 ^c	-	-	-	-		-

^a Taken from Ref. [9].

b Taken from Ref. [10].

^c Taken from Ref. [20].

Download English Version:

https://daneshyari.com/en/article/5417505

Download Persian Version:

https://daneshyari.com/article/5417505

<u>Daneshyari.com</u>