

Journal of Molecular Structure: THEOCHEM 857 (2008) 57-65

CHEM

THEO

www.elsevier.com/locate/theochem

### Cl-Initiated oxidation of *N*-ethyl-perfluoroalkanesulfonamides: A theoretical insight into the experimentally observed products

Paola Antoniotti<sup>a</sup>, Stefano Borocci<sup>b</sup>, Maria Giordani<sup>b</sup>, Felice Grandinetti<sup>b,\*</sup>

<sup>a</sup> Dipartimento di Chimica Generale ed Organica Applicata, Università degli Studi di Torino, C.so M. D' Azeglio, 48, 10125 Torino, Italy <sup>b</sup> Dipartimento di Scienze Ambientali, Università della Tuscia, L.go dell' Università, s.n.c., 01100 Viterbo, Italy

> Received 25 November 2007; received in revised form 10 January 2008; accepted 4 February 2008 Available online 19 February 2008

#### Abstract

Theoretical calculations at the B3LYP level of theory were performed to investigate the Cl-initiated oxidation of the *N*-ethyl-perfluorobutanesulfonamide ( $C_4F_9SO_2$ -NH-CH\_2CH\_3; NEtFBSA). We studied in particular the thermodynamic aspects of the possible oxidation reactions so to obtain a first indication on the conceivably preferred pathways and on the structure and stability of the observed products. The reactions of Cl with the model compound CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub> produce the three primary radicals CF<sub>3</sub>SO<sub>2</sub>-N-CH<sub>2</sub>CH<sub>3</sub> (1), CF<sub>3</sub>SO<sub>2</sub>-NH-CHCH<sub>3</sub> (2), and CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>2</sub> (3). Both 2 and 3 react excergically with O<sub>2</sub> and eventually form the ketone CF<sub>3</sub>SO<sub>2</sub>-NH-C(O)-CH<sub>3</sub> and the aldehyde CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>-C(O)-H, respectively. The addition of O<sub>2</sub> to the N atom of 1 is instead endoergic, but the radical can excergically react with RO<sub>2</sub> with formation of CF<sub>3</sub>SO<sub>2</sub>-N(O)-CH<sub>2</sub>CH<sub>3</sub>, and/or CF<sub>3</sub>SO<sub>2</sub>-N-O-CH<sub>2</sub>CH<sub>3</sub>. These three intermediates may in turn react with HO<sub>2</sub> to produce, at least in principle, the four neutral products CF<sub>3</sub>SO<sub>2</sub>-N(OH)-CH<sub>2</sub>CH<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-N(O)H-CH<sub>2</sub>CH<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-NH-CH<sub>2</sub>CH<sub>3</sub>. This explains the proposed formation of a mixture of isomeric products of general formula C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>N(C<sub>2</sub>H<sub>5</sub>OH) from the Cl-initiated oxidation of NEtFBSA. CF<sub>3</sub>SO<sub>2</sub>-N(O)-CH<sub>2</sub>CH<sub>3</sub> and CF<sub>3</sub>SO<sub>2</sub>-O-N-CH<sub>2</sub>CH<sub>3</sub> may also dissociate into CH<sub>3</sub>CH<sub>2</sub>-NO and CF<sub>3</sub>SO<sub>2</sub> and/or CF<sub>3</sub>. This suggests that the sulfonamide radicals  $C_nF_{2n+1}SO_2$ -N-CH<sub>2</sub>CH<sub>3</sub>, once oxidized, could be direct precursors of perfluoroalkanecarboxylic acids *via*  $C_nF_{2n+1}SO_2$  and  $C_nF_{2n+1}SO_2$ -N-CH<sub>2</sub>CH<sub>3</sub> with O<sub>2</sub>, while excergic, is not supported by the experiments on the Cl-initiated oxidation of NEtFBSA.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Atmospheric degradation; DFT calculations; N-Ethyl-perfluoroalkanesulfonamides; Structure and stability

#### 1. Introduction

Perfluoroalkanesulfonates (PFSAs,  $CF_3(CF_2)_nSO_3^-$ ) and perfluoroalkanecarboxylates (PFCAs,  $CF_3(CF_2)_n$  $CO_2^-$ ), extensively used for over 40 years in a number of applications [1,2], have been recently detected as persistent contaminants of wildlife [3], including species in the remote Arctic zones [4]. The physical and chemical properties of PFSAs and PFCAs are, however, only little compatible with atmospheric transport, and two hypotheses have been

\* Corresponding author. Tel.: +39 0761 357126.

E-mail address: fgrandi@unitus.it (F. Grandinetti).

proposed to explain the observation of PFSAs and PFCAs far from major production and emission areas. First, water-soluble compounds such as the shorter-chain PFCAs may be transported directly by sea currents or by means of sea-spray [2,3,5]. Alternatively, persistent PFSAs and PFCAs may be formed by "in situ" oxidation of suitable volatile precursors which undergo long-range atmospheric transport far from their point(s) of emission. This hypothesis, recently corroborated by novel experiments [6,7], was first suggested [8] by the detection in ambient air of industrially-employed perfluoroalkane compounds such as the fluorotelomer alcohols  $C_nF_{2n+1}C_2H_4OH$  (n = 6, 8, 10) and the N-substituted perfluoroactanesulfonamides  $C_8F_{17}$ 

<sup>0166-1280/\$ -</sup> see front matter  $\odot$  2008 Elsevier B.V. All rights reserved. doi:10.1016/j.theochem.2008.02.006

SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub>, C<sub>8</sub>F<sub>17</sub>SO<sub>2</sub>-N(CH<sub>3</sub>)-CH<sub>2</sub>CH<sub>2</sub>OH, and C<sub>8</sub>F<sub>17</sub>SO<sub>2</sub>-N(CH<sub>2</sub>CH<sub>3</sub>)-CH<sub>2</sub>CH<sub>2</sub>OH. Subsequent studies [9–12] established that the atmospheric fate of the fluorotelomer alcohols includes substantial long-range atmospheric transport and gas-phase production of PFCAs. More recently, using the Cl atom as a surrogate of OH, Mabury, Wallimgton, and co-workers investigated the Cl-initiated oxidation of the two model compounds N-methyl-perfluorobutanesulfonamidoethanol  $(C_4F_9SO_2-N(CH_3)-CH_2)$ CH<sub>2</sub>OH) [13], and N-ethyl-perfluorobutanesulfonamide (C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub>; NEtFBSA) [14]. In particular, liquid chromatography/tandem mass spectrometry (LC/ MS/MS) experiments showed that the products obtained from NEtFBSA included the ketone C4F9SO2-NH- $C(O)-CH_3$  and the aldehyde  $C_4F_9SO_2-NH-CH_2-C(O)-CH_3$ H, obtained from the oxidation of the ethyl group of NEtFBSA, the aldehyde C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-NH-C(O)-H, obtained from the oxidation of  $C_4F_9SO_7-NH-CH_7-C(O)-H$ , and a species whose anion was identified as C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-N- $(C_2H_5O)^-$  by high-resolution MS but whose structure remained tentative. Another aldehyde or ketone probably arising from this unknown compound was also detected, together with the sulfonamide C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-NH<sub>2</sub>. Perfluorobutanesulfonate was not revealed above the level of the blank, while the three PFCAs C<sub>3</sub>F<sub>7</sub>CO<sub>2</sub><sup>-</sup>, C<sub>2</sub>F<sub>5</sub>CO<sub>2</sub><sup>-</sup>, and CF<sub>3</sub>CO<sub>2</sub><sup>-</sup> were detected in all samples. While the formation of C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-NH-C(O)-CH<sub>3</sub> and C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>-C(O)-H can be explained by typical reaction sequences [15] commenced by H-atoms abstraction from the ethyl group of NEtFBSA, the "unknown" product reasonably arises from the oxidation of the primary Nradical C<sub>4</sub>F<sub>9</sub>SO<sub>2</sub>-N-CH<sub>2</sub>CH<sub>3</sub>. The atmospheric fate of the amine radicals  $R_1$ -N- $R_2$  has however received only limited attention [16], and, in particular, neither experimental nor theoretical studies have been reported on the structure and stability of the products arising from the oxidation of the sulfonamide radicals  $R_1$ -SO<sub>2</sub>-N-R<sub>2</sub>. We therefore decided to undertake a theoretical investigation on the Cl-initiated oxidation of the model compound CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub>. As noted previously [14], the length of the perfluorinated chain is not expected to have a substantial effect on the reactivity of perfluoroalkanesulfonamides. Our calculations describe in particular the thermodynamic aspects of the possible Cl-initiated oxidation reactions of the N-ethyl-perfluoroalkanesulfonamides so to obtain a first indication on the conceivably preferred pathways and on the structure and stability of the observed products.

#### 2. Computational methods

The quantum chemical calculations were performed using the Unix version of the Gaussian03 [17] set of programs. The geometries of the investigated molecules and radicals were optimized using the hybrid exchange correlation functional B3LYP, which combines the Becke's threeterms exchange functional [18,19] with the non-local correlation functional of Lee, Yang, and Parr [20], in conjunction with the 6-31++G(d,p) basis set [21]. The total energies were subsequently refined by B3LYP/6-311++G(2df,2pd) single-point calculations. All the stationary points located on the B3LYP/6-31++G(d,p)potential energy surface, obtained by unconstrained gradient procedures [22-25], were unambiguously characterized as energy minima by calculating their harmonic vibrational frequencies. The unscaled values were also used to evaluate the zero-point energies and the vibrational contribution to the thermal correction (TC), obtained at 298.15 K by standard statistical mechanics formulas [26]. The overall TC term was finally obtained by adding the translational (3/2)RT) and rotational (RT or 3/2 RT) contributions at this temperature. The total entropies were calculated using the B3LYP/6-31++G(d,p) harmonic frequencies and moments of inertia.

#### 3. Results and discussion

Scheme 1 shows the most relevant elementary steps of our proposed mechanism of the Cl-initiated gas-phase oxidation of CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub>. The products indicated by boxes are the corresponding analogues of those experimentally observed from the Cl-initiated oxidation of NEtFBSA [14]. For any unimolecular or bimolecular reaction, the positive or negative quoted values are the enthalpy ( $\Delta H$ ) and the free energy change ( $\Delta G$ ) calculated from the data listed in Table 1. The relevant optimized geometric parameters of selected intermediates (particularly those involved in the oxidation of the sulfonamide radical CF<sub>3</sub>SO<sub>2</sub>-N-CH<sub>2</sub>CH<sub>3</sub>) are shown in Fig. 1.

## 3.1. *H*-atom abstraction from CF<sub>3</sub>SO<sub>2</sub>–NH–CH<sub>2</sub>CH<sub>3</sub>: formation of the primary radicals

The primary reactions of the Cl-initiated oxidation of NEtFBSA were proposed to be the H-atom abstraction from the carbons of the ethyl moiety and from the nitrogen atom [14]. Consistently, from Scheme 1, the reaction of Cl with any H atom of CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub> is exoergic by 5-14 kcal mol<sup>-1</sup> and produces the three isomeric radicals 1 (from NH), 2 (from CH<sub>2</sub>), and 3 (from CH<sub>3</sub>). All these species are true minima on the doublet B3LYP/6-31++G(d,p) potential energy surface, and, at the B3LYP/6-311++G(2df,2pd)//B3LYP/6-31++G(d,p)level of theory, their order of stability is 2 > 1 > 3. The secondary C-radical 2 is therefore more stable than the primary radical 3 (this is likely due to the ability of the lone pair on N to stabilize the radical center) and their formation from CF<sub>3</sub>SO<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>3</sub> does not produce appreciable structural changes. The formation of the sulfonamide radical 1 results as well in essentially unchanged bond distances, while the C-N-S bond angle reduces by nearly 8 degrees. We note also the symmetry change of the skeletal conformation from  $C_1$  to  $C_s$ .

Download English Version:

# https://daneshyari.com/en/article/5418272

Download Persian Version:

https://daneshyari.com/article/5418272

Daneshyari.com