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Abstract

Bosons in optical lattices and rings are attractive and active fields of research in cold-atom physics. Here, we apply our recently developed

coupled-cluster approach for bosons in external traps to these systems, and extend it to the lowest-in-energy excited states with total quasi- or

angular-momentum k. In the coupled-cluster approach the exact many-boson ground state is obtained by applying an exponential operator exp{T},

TZ
PN

nZ1 Tn to the ground configuration, which is (usually) the state where the bosons occupy a single orbital. For excited states, a second

exponential operator exp{T(k)}, T ðkÞZ
PN

nZ1 T
ðkÞ
n is employed to accommodate the remaining excitations from the unperturbed excited

configuration. Due to the conservation of momentum, T1 and T ðkÞ
1 can vanish. Working equations for coupled-cluster (singles) doubles (CCD)

are provided and their implications are briefly discussed.
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1. Introduction

Following the experimental demonstrations of Bose–

Einstein condensates in dilute gases [1,2], the problem of

many bosonic atoms interacting in a trap potential has attracted

an accelerated interest by the scientific community, see [3,4]

and references therein. Nowadays, one of the most active

subjects in cold-atom physics is the study of bosons in

optical lattices, see, e.g. Refs. [5–10] and the recent review

[11] and references therein. The problem of bosons in a ring,

which dates back at least to the 1960s [12], has attracted its

own attention in the context of cold-atom research [13–18].

There are many phenomena trapped bosons exhibit that can

be described quite well by the standard mean-field approach,

namely Gross–Pitaevskii (GP) theory [19], see [3,4] and

reference therein. Side-by-side, the necessity to go beyond

mean-field and describe many-body facets of trapped bosons,

e.g. the superfluid to Mott-insulator transition in optical

lattices [5,6], has become well-accepted and pursued by the

community, see the reviews [20] and [21], and references

therein.

The many-boson problem is difficult to tackle. Consider, for

instance, the standard configuration-interaction (CI) approach,

which employs a basis set expansion. When the interaction

between the N bosons is substantial and/or many of them are

present, the number of configurations necessary to properly

describe the correlated wavefunction quickly increases beyond

computational reach and truncations become a must. When

truncations of the CI expansion are made, there are hints and

evidences to slow convergence of the CI expansion, see, e.g.

[15,22]. Evidently, development of other many-body methods,

which truncate the full configuration space in a different

manner are of high relevance and actuality. Such methods

are reviewed in [20] and [21], the latter being devoted to the

extensively studied homogeneous Bose gas problem.

Coupled-cluster theory was first formulated in nuclear

physics by Coester [23] and Coester and Kümmel [24], and

soon after was introduced to electron-structure theory by Čižek

[25] and Čižek and Paldus [26]. Coupled-cluster theory has

since proven to be a very valuable and accurate approach in the

many-fermion problem, see [27–29] and references therein.

For atomic and molecular systems, coupled-cluster theory is

currently considered to be one of the if not the most powerful
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many-body tool for calculating electron-correlation energies

[27–29], also in relativistic systems [30]. In the coupled-cluster

approach the exact many-body wavefunction is obtained

by applying an exponential operator exp{T} to the ground

configuration jf0i. In practice, one truncates of course the

operator T. For fermions, it is widely known that truncated

coupled-cluster expansions are size consistent, which is

another advantage the coupled-cluster approach possesses in

comparison to truncated CI expansions, which are not size

consistent [31].

Recently, we derived a coupled-cluster theory for bosons

with emphasis on systems of interacting indistinguishable

bosons in traps with up to many particles [32]. In Ref. [32],

aspects like size consistency and what to use as the initial

ground configuration jf0i were investigated in detail. We have

shown that, in contrast to the familiar situation for fermions for

which coupled-cluster expansions are size consistent, for

bosons the answer to this question depends on the choice of

the ground configuration. In the present work, we would like to

apply our recently developed coupled-cluster approach of Ref.

[32] to the correlated ground-state of bosons in optical lattices

and rings, making use of the high spatial symmetry of these

systems. Furthermore, we extend our coupled-cluster approach

to the lowest-in-energy excited states with total quasi- or

angular-momentum k of bosons in optical lattices and rings.

Finally, we would like to mention that coupled-cluster

approaches for molecular vibrations [33], ‘bosonic nuclei’

[34], the spin-boson model [35], and within bosonization of

many-electron systems [36] have been studied in the literature,

but are very different from our work.

The structure of the paper is as follows. In Section 2, we

derive the coupled-cluster theory for the ground- and excited-

states of bosons in rings and optical lattices. Working equations

for the particular truncation of the coupled-cluster to (single)

and double excitations (CCD) are derived in Section 3 for

bosons in a ring. Finally, in Section 4, we discuss the present

results and provide concluding remarks.

2. Ground and excited-state coupled-cluster Ansätze

2.1. Preliminaries

Consider a system of interacting N identical bosons in an

one-dimensional (1D) optical lattice where a is the lattice

constant. Periodic boundary conditions are assumed with L

being the normalization ‘volume’. The problem of N identical

bosons in an 1D ring of perimeter L is equivalent to the former,

when the optical-lattice potential vanishes. Therefore, we

describe both systems by the same coordinate x and treat

them hereafter simultaneously, as much as possible. For

instance, we use the shorthand notion of momentum k to

describe the bosons angular momentum in the ring and quasi-

momentum in the optical lattice. Due to the presence of

translational symmetry–continuous symmetry for the ring and

discrete symmetry for the lattice—the momentum k is a good

quantum number. Of course, for the ring k is unbounded, kZ
2pn=L where n is any integer, whereas in optical lattices k can

be restricted, say, to the first Brillouin zone,Kp=a!k%p=a
(Gp/a correspond to equivalent points in reciprocal space).

The many-boson ground state of the system has, of course, zero

total momentum.

As usual, the Hamiltonian H of the system consists of an

one-particle operator ĥðxÞ and a two-particle interaction

V̂ðjxKx0jÞ. It is convenient to introduce one-body functions

(orbitals), which are eigenfunctions of ĥðxÞ and of the trans-

lation operator, ĥðxÞ4kðxÞZ3k4kðxÞ. Let us also introduce

destruction and creation operators bk and b†k corresponding to

the orbitals 4k(x). These operators fulfill the usual commuta-

tion relations

½bk;b
†
k 0
�Z dk;k 0 ; ½bk;bk 0 �Z ½b†k ;b

†
k 0
�Z 0 (1)

for bosons. Utilizing these operators, we define the ground

configuration

jf0iZ
1ffiffiffiffiffiffi
N!

p b†0
� �N

j0ih jN0i; hf0jf0iZ 1 (2)

which is the ground state of the system in the absence of

interaction between the bosons. j0i denotes the vacuum.

Similarly, we define the lowest-in-energy excited configu-

rations of definite momentum k, obtained by an excitation of

a single boson from 40(x) to 4k(x), as:

jfkiZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNK1Þ!
p b†k b†0

� �ðNK1Þ
j0ih jðNK1Þ0;1ki;

hfkjfkiZ 1:

(3)

Obviously, jf0i and jfki are orthonormal configurations.

Finally, expressed in second quantization notation H takes on

the common appearance [37]

H Z
X
k

hkkb
†
kbk C

1

2

X
kpq

VðpCqKkÞkpqb
†
ðpCqKkÞb

†
kbpbq (4)

where:

hkk Z

ð
4�
k ðxÞĥ4kðxÞdxZ 3k;

VðpCqKkÞkpq Z

ðð
4�
pCqKkðxÞ4

�
k ðx

0ÞV̂ðjxKx0jÞ4pðxÞ4qðx
0Þdxdx0:

(5)

Here, conservation of momentum has been assumed

explicitly.

2.2. Coupled-cluster for the ground state

Let us begin by formulating our coupled-cluster theory for

the bosons in the ground-state [32], making particular use of

the translational symmetry of the systems under investigation.

In the coupled-cluster approach, the exact ground wavefunc-

tion jJ0i is obtained by applying an exponential operator to the

ground configuration (2):

jJ0iZ eT jf0i: (6)
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