
ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Structure: THEOCHEM

Structure, bonding, reactivity and aromaticity of some selected Zn-clusters

A. Chakraborty, S. Giri, P.K. Chattaraj *

Department of Chemistry and Center for Theoretical Studies, IIT Kharagpur, Kharagpur 721 302, India

ARTICLE INFO

Article history: Received 30 June 2009 Received in revised form 14 July 2009 Accepted 16 July 2009 Available online 19 July 2009

Keywords: Aromaticity Metal clusters Conceptual DFT

ABSTRACT

Geometries of several all-metal clusters with ${\rm Zn_3}^2$ as the base are optimized within a B3LYP/6-311+G(d) level of theory. It is analyzed that the stability, bonding, reactivity and aromaticity patterns of such clusters often change drastically in the presence of counter cations like Li⁺, Na⁺ or K⁺ and/or through the substitution of ${\rm Zn_3}^2$ units by Be₅ or C₅H₅ rings.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of ferrocene [1-4] about six decades ago set a new benchmark for both the experimentalists and the theoreticians to prepare a huge variety of metal sandwiched complexes called metallocenes. Further enrichment of thoughts provoked the genesis of triple and multi-decker forms of these metallocenes which are better known as multi-decker sandwich complexes. Such triple and multi-decker complexes have also been studied experimentally [5-7] and theoretically [8,9]. The breakthrough concept of "all-metal aromaticity" in an Al₄²⁻ system introduced by Boldyrev et al. [10] proved very fruitful to study the structure and bonding patterns of many such all-metal clusters. The ${\rm Al_4}^{2-}$ species showed π -aromaticity over a σ -framework. The ability of a metal atom to bind with the same atom to form an M-M bond in a compound is a topic of immense interest in metal cluster chemistry. Parkin [11] and Resa et al. [12] in their landmark articles proved the very existence of such a bonding between Zn atoms (Zn–Zn bond) in a complex for the first time. The existence of an all-beryllium chain-cluster (Be₈²⁻) containing a Be-Be bond has also been recently reported [13]. The trigonal planar Zn₃²⁻ moiety is also well-known [14]. It possesses pure π -type aromaticity without a σ -framework unlike the Al₄²⁻ species which shows both σ - and π -aromaticities [10]. It may, however, be mentioned that many of these molecules are of "fleeting" type and do not correspond to the global minima [15].

In this article, we report the existence of a number of all-zinc chain-like clusters containing the Zn–Zn (2, 3 and 4 Zn atoms) link-

age by starting with $\mathrm{Zn_3}^{2-}$ as the base. The $\mathrm{Zn_3}^{2-}$ moiety is also further complexed with suitable counter cations like Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺ and Ca²⁺ to produce mixed-metal clusters. The Zn₃²⁻ ring in some of the all-zinc clusters are also substituted by the cyclopentadienyl anion ($Cp^- \equiv C_5H_5^-$) and Be_5^- ring. We also study a number of possible reactions that may occur upon substitution of the Zn₃²⁻ ring with Cp⁻ or Be₅⁻. The diverse aspects of the all-metal clusters like stability, reactivity trends and aromatic behavior can be well evaluated with the help of conceptual density functional theory [16-19] in conjunction with the various global reactivity descriptors like electronegativity [20–22] (χ), hardness [23–25] (η) , electrophilicity [26–28] (ω) and the local descriptors like atomic charges [29] (Q_k) and Fukui functions [30] (f_k) . The nucleus independent chemical shift (NICS) values obtained by exploiting the procedure of Schleyer et al. [31] are analyzed to realize the aromaticity patterns of the metal-clustered complexes. The probability of the reactions occurring upon substitution of the Zn₃²⁻ ring by Cp⁻ or Be₅⁻ in the all-zinc clusters is explored from their respective changes in enthalpy (ΔH) and electrophilicity ($\Delta \omega$) values.

2. Theoretical background

All spontaneous processes in environment are generally accompanied by a lowering in the energy (E) values of the resultant systems. This situation may further be described by a maximization in the hardness [32–34] (η) and minimization in the polarizability [35,36] (α) and electrophilicity [37,38] (ω) values. The most stable structures are also obtained following these electronic structure principles. In an N-electron system, the electronegativity [20–22] (χ) and hardness [23–25] (η) can be defined as follows:

^{*} Corresponding author. E-mail address: pkc@chem.iitkgp.ernet.in (P.K. Chattaraj).

Table 1 The total energy (E in au), electronegativity (χ in eV), hardness (η in eV) and electrophilicity (ω in eV) of the different metal clusters.

Molecules	E (au)	χ (eV)	η (eV)	ω (eV)
$[Zn_3]^{2-}$	-5337.96696	-4.139	1.230	6.963
Zn ₃ –Zn	-7117.42290	4.276	3.558	2.570
$[Zn_3-Zn-Zn_3]^{2-}$	-12455.47682	-3.042	1.248	3.705
$[Zn_3-Zn-Zn-Zn_3]^{2-}$	-14234.85248	-2.715	1.266	2.911
$[Zn_3-Zn-Zn-Zn-Zn_3]^{2-}$	-16014.21790	-2.432	1.212	2.439
$[Zn_3-Zn-Zn-Zn-Zn-Zn_3]^{2-}$	-17793.58082	-2.203	1.182	2.052
[Zn ₃ –Li] [–]	-5345.61752	-0.443	1.595	0.062
[Zn ₃ -Na] ⁻	-5500.40622	-0.347	1.542	0.039
[Zn ₃ –K] [–]	-5938.03877	-0.308	1.274	0.037
Zn ₃ –Be	-5352.76070	4.043	2.999	2.725
Zn ₃ -Mg	-5538.16729	3.852	3.073	2.413
Zn₃−Ca	-6015.65893	3.307	2.477	2.207
Li–Zn₃–Li	-5353.12638	3.119	2.432	2.001
Na-Zn ₃ -Na	-5662.69519	2.984	2.300	1.936
K–Zn ₃ –K	-6537.96708	2.494	1.844	1.687
[Be-Zn ₃ -Be] ²⁺	-5366.84043	13.772	3.316	28.595
$[Mg-Zn_3-Mg]^{2+}$	-5737.69138	12.742	3.197	25.389
[Ca-Zn ₃ -Ca] ²⁺	-6692.76523	11.108	2.708	22.785
$[C_5H_5]^-$	-193.56993	-1.512	3.423	0.334
C_5H_5 – Zn – C_5H_5	-2166.45825	3.698	3.894	1.756
C_5H_5 – Zn – Zn – C_5H_5	-3945.84289	3.718	4.160	1.661
C_5H_5 – Zn – Zn – Zn – C_5H_5	-5725.19950	3.845	3.714	1.991
[Be ₅] ⁻	-73.56509	-0.521	2.024	0.067
Be ₅ –Zn–Zn–Be ₅	-3705.81149	4.257	1.796	5.045
Be ₅ –Zn–Zn–Zn–Be ₅	-5485.16880	4.196	1.695	5.194
Be ₅ –Zn–Zn–Zn–Zn–Be ₅	-7264.52353	4.113	1.610	5.255

Table 2
The point groups (PG) and NICS(0) values of different metal clusters.

Molecules	Point group (PG)	NICS(0) in ppm
$[Zn_3]^{2-}$	D _{3h}	-7.591(Zn ₃)
Zn ₃ –Zn	T_d	-16.8454(Zn ₃)
$[Zn_3-Zn-Zn_3]^{2-}$	D_{3d}	$-24.396(Zn_3), -24.396(Zn_3)$
$[Zn_3-Zn-Zn-Zn_3]^{2-}$	D_{3h}	$-24.228(Zn_3), -24.228(Zn_3)$
$[Zn_3-Zn-Zn-Zn-Zn_3]^{2-}$	D_{3h}	$-26.080(Zn_3), -26.080(Zn_3)$
$[Zn_3-Zn-Zn-Zn-Zn-Zn_3]^{2-}$	D_{3h}	$-25.702(Zn_3), -25.702(Zn_3)$
[Zn ₃ -Li] ⁻	C_{3v}	-27.750(Zn ₃)
[Zn ₃ -Na] ⁻	C_{3v}	$-24.619(Zn_3)$
[Zn ₃ -K] ⁻	C_{3v}	$-23.013(Zn_3)$
Zn ₃ -Be	C_{3v}	-28.650(Zn ₃)
Zn ₃ -Mg	C_{3v}	-20.300(Zn ₃)
Zn ₃ -Ca	C_{3v}	-24.637(Zn ₃)
Li-Zn ₃ -Li	D_{3h}	-33.291(Zn ₃)
Na-Zn ₃ -Na	D_{3h}	-31.435(Zn ₃)
K-Zn ₃ -K	D_{3h}	$-29.919(Zn_3)$
[Be-Zn ₃ -Be] ²⁺	D_{3h}	$-28.579(Zn_3)$
$[Mg-Zn_3-Mg]^{2+}$	D_{3h}	-22.486(Zn ₃)
$[Ca-Zn_3-Ca]^{2+}$	D_{3h}	-30.811(Zn ₃)
$[C_5H_5]^-$	D_{5h}	-12.531(C ₅ H ₅)
C_5H_5 – Zn – C_5H_5	C_1	$-7.407(C_5H_5), -11.564(C_5H_5)$
C_5H_5 – Zn – Zn – C_5H_5	D_5	$-14.880(C_5H_5), -14.810(C_5H_5)$
C_5H_5 – Zn – Zn – Zn – C_5H_5	D_5	$-14.937(C_5H_5)$, $-14.974(C_5H_5)$
[Be ₅] ⁻	D_{5h}	-4.776(Be ₅)
Be ₅ –Zn–Zn–Be ₅	D_5	6.770(Be ₅), 6.770(Be ₅)
Be ₅ –Zn–Zn–Zn–Be ₅	D_{5d}	6.833(Be ₅), 6.833(Be ₅)
Be ₅ –Zn–Zn–Zn–Be ₅	D_{5d}	6.867(Be ₅), 6.867(Be ₅)

Table 3 The atomic charges (Q_k) and fukui functions (f_k^+, f_k^-, MPA) of the different metal clusters.

Molecules	Unit	Atomic charge(Q_k)	f_k^+ (MPA)	f_k (MPA)
$[Zn_3]^{2-}$	Zn ₃	-0.668, -0.665, -0.666	0.348, 0.327, 0.325	0.335, 0.332, 0.333
Zn ₃ –Zn	Zn ₃	0.000, 0.000, 0.000	0.250, 0.250, 0.250	0.289, 0.270, 0.228
	Zn	0.000	0.250	0.212
$[Zn_3-Zn-Zn_3]^{2-}$	Zn ₃	-0.320, -0.320, -0.320	0.483, 0.483, 0.483	0.163, 0.163, 0.163
	Zn ₃	-0.320, -0.320, -0.320	0.483, 0.483, 0.483	0.163, 0.163, 0.163
	Zn	-0.078	-1.898	0.020
$[Zn_3$ – Zn – Zn – $Zn_3]^2$ –	Zn ₃	-0.451, -0.451, -0.451	0.514, 0.514, 0.514	0.224, 0.224, 0.224
	Zn ₃	-0.451, -0.451, -0.451	0.514, 0.514, 0.514	0.224, 0.224, 0.224
	Zn	0.354	-1.043	-0.171
	Zn	0.354	-1.043	-0.171
[Zn ₃ –Zn–Zn–Zn–Zn ₃] ^{2–}	Zn ₃ Zn ₃ Zn Zn Zn Zn	-0.435, -0.435, -0.435 -0.435, -0.435, -0.435 0.254 0.254 0.101	0.473, 0.473, 0.473 0.473, 0.473, 0.473 -1.317 -1.317 0.793	0.204, 0.204, 0.204 0.204, 0.204, 0.204 -0.164 -0.164 0.106
[Zn ₃ -Zn-Zn-Zn-Zn-Zn ₃] ²⁻	Zn ₃ Zn ₃ Zn Zn Zn Zn Zn	-0.421, -0.421, -0.421 -0.421, -0.421, -0.421 -0.051 -0.051 0.313	0.436, 0.436, 0.436 0.436, 0.436, 0.436 0.275 0.275 -1.084 -1.084	0.190, 0.190, 0.190 0.190, 0.190, 0.190 0.109 0.109 -0.179 -0.179
[Zn ₃ –Li] [–]	Zn ₃	-0.209, -0.209, -0.209	-0.288, -0.298, -0.263	0.159, 0.159, 0.159
	Li	-0.373	1.849	0.524
[Zn ₃ -Na] ⁻	Zn ₃	-0.202, -0.202, -0.202	-0.100, -0.058, -0.008	0.133, 0.133, 0.133
	Na	-0.395	1.166	0.602
[Zn ₃ –K] [–]	Zn ₃	-0.227, -0.227, -0.227	0.003, -0.069, -0.022	0.093, 0.093, 0.092
	K	-0.317	1.089	0.722
Zn ₃ –Be	Zn ₃	-0.004, -0.004, -0.004	0.316, 0.316, 0.316	0.223, 0.222, 0.222
	Be	0.011	0.052	0.333
Zn ₃ –Mg	Zn ₃	-0.018, -0.018, -0.018	0.323, 0.323, 0.323	0.158, 0.158, 0.158
	Mg	0.053	0.032	0.526
Zn ₃ –Ca	Zn ₃	-0.119, -0.119, -0.119	0.158, 0.158, 0.158	0.147, 0.147, 0.147
	Ca	0.356	0.525	0.560
Li–Zn ₃ –Li	Zn ₃	-0.148, -0.148, -0.148	0.119, 0.119, 0.119	0.156, 0.156, 0.156
	Li	0.221	0.322	0.266
	Li	0.221	0.322	0.266
				(continued on next page)

Download English Version:

https://daneshyari.com/en/article/5418545

Download Persian Version:

https://daneshyari.com/article/5418545

<u>Daneshyari.com</u>