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have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and
product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily

ﬁz‘l’{""m&' through product release, with the chemical reaction occurring much more quickly. As a result, the direct
. . . involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown

Relaxation dispersion . . . . . :

CPMG and untested. In the following review, we describe the use of solution NMR techniques designed to probe

Rirho various timescales of molecular motions and detail examples in which motions play a role in propagating

Enzymes catalytic effects from the active site and directly participate in essential aspects of enzyme function.
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1. NMR methods and theory catalytic cycle and these motions must occur with timescales com-
mensurate with the rate constants that define the reaction mecha-
Molecular motions are critical in the function of enzymes. nism. Characterization of these motions is essential to
Enzymes change their conformation multiple times during the understanding their role in enzyme chemistry. Solution NMR spec-

troscopy is the experimental method of choice for analyzing
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Moreover the incorporation of spin-1/2 nuclei into proteins is min-
imally perturbative and is relatively straightforward. Further, NMR
spectroscopy maintains protein integrity, and the experimental
library for the study of protein structure and dynamics is con-
stantly improving. Biomolecular NMR has historically been
restricted to proteins smaller than 50 kDa, but novel TROSY [1]
methods and '>C-methyl labeling strategies [2-5] now enable the
study of much larger proteins through enhanced signal-to-noise
(S/N) and resolution.

Here, we briefly review the NMR methods designed to charac-
terize macromolecular motions followed by examining several
examples from the authors’ work that illustrate some of the biolog-
ical insight that can be obtained through the use of this powerful
technique.

1.1. Picosecond-to-nanosecond motions (ps-ns)

NMR techniques are powerful for the study of atomic-
resolution protein dynamics over an enormous time scale ranging
from picoseconds (ps) to seconds (s) (Fig. 1) [6-9]. Motions on the
fast end (ps—ns) of this continuum, which are faster than the over-
all rotational diffusion of the protein under study, reflect stochastic
equilibrium fluctuations in the bond vectors of individual atoms.
These stochastic motions modulate the chemical shift anisotropy
and dipolar interactions between the nuclei. The identity of nuclei
and frequency of the motions determine the rate at which Boltz-
mann equilibrium is established [10-14]. A comprehensive review
of the theoretical aspects of NMR spin-relaxation is given by Pal-
mer et al. [15-17] Here, we present a shortened overview of the
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spin-relaxation formalism. The mathematical expressions below
are useful for describing a heteronuclear spin-1/2 pair system such
as the amide proton-nitrogen (!H-'°N) located in the protein back-
bone. The longitudinal, transverse magnetization and cross-
relaxation of the >N heteronucleus relax (R;, Ry, o}s) or return to
their Boltzmann equilibrium state as described by Abragam [18],

Ri = (& /4)[[(w; — ws) + 3] (ws) + 6] (w0 + ws)] + ¢ (ws) (1)
R, = (d*/8)[4](0) + J(wr — ws) + 3] (ws) + 6] (wy)

+ 6J(w; + s)] + (c*/6)[4](0) + 3] (ws)] + Rex 2)
a1s = (d* /4) [ (o) + ws) — J (@ — ws)] (3)

where w; and ws are the Larmor frequencies of the I (*H) and S (°N)
nuclei and c¢ is the chemical shift anisotropy coupling con-
stant = Acws/v/3, in which Ag is the chemical shift anisotropy
value of the S nucleus. R, is the additional contribution to R, that
results from conformational exchange motions that occur with
ps-ms frequency and is often equal to zero. The dipolar coupling
constant d is described by Eq. (4),

d = (Hohysy,/87°)(ris”). 4)
Here, u, is the permeability of free space, h is Planck’s constant, 7},
and ys are the gyromagnetic ratios of nuclei I and S, and (rs) is
the average internuclear bond length for the I and S atoms. The
spectral density function, J(w), is the cosine Fourier transform of
the autocorrelation function of the I-S bond vector motion [18].

J(w) =2 / () cos wt dt (5)
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Fig. 1. Timescale depicting enzyme motions. (Top) A cartoon representation of the types and variety of enzyme motions. (Bottom) A list of the types of solution NMR

experiments and the timescale of motions to which they are sensitive.
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