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1. Introduction

Multidimensional NMR spectroscopy has been established as
an indispensible tool for studying structure, dynamics, and inter-
actions of biopolymers. When used in the frame of a contempo-
rary structural molecular biology project with streamlined
efficient target selection and protein expression, NMR often repre-
sents a major time bottleneck [9]. In order to determine spatial
structure of a protein, one needs to spend weeks on data collec-
tion followed by data analysis, which is at least as lengthy and
is usually performed manually. The NMR community has devoted
significant attention to the need to save spectrometer time and to
automate the analysis steps [10-12]. This review is devoted to
one of the approaches developed to address these challenges
and thus to increase the effectiveness of biomolecular NMR. It
gives an account of the work performed in our group over the last
several years on non-uniform sampling (NUS) and multi-
dimensional decomposition (MDD).

In traditional spectroscopy, which relies on the uniform
sampling of the signal in the time domain, high resolution in
the indirect spectral dimensions comes at the expense of long
measurement time and compromised sensitivity. Novel sparse
sampling schemes and corresponding processing methods aim
to avoid these problems. The duration of a multidimensional
NMR experiment is determined by the time needed for measure-
ment of one data point and the number of these. Both factors are
targeted in ongoing efforts to speed up the experiments. Record-
ing individual data points can be accelerated by reducing the
delay between consecutive measurements [13] or by gradient
encoding of the indirect dimensions in a single scan [14]. Sparse
sampling schemes reduce the number of data points without los-
ing essential information. In particular, in GFT [15] and projection
reconstruction [16,17], only specific spectral projections of lower
dimensionality are used to obtain information present in com-
plete multidimensional spectra. As an alternative, NUS, which is
also referred to as non-linear or sparse sampling, allows recon-
struction of a complete spectrum from only a small number of
optimally selected experimental data points [18]. By taking into
account prior information about signal properties, a NUS schedule
can be optimized for maximum spectral sensitivity and resolution
[18]. The approach requires nontraditional signal processing
schemes such as non-linear Fourier transform [19-21], maximum
entropy [22-24], or multi-dimensional decomposition (MDD)
[1,5-7]. The later method and its applications is the focus of this
review.

2. Theory
2.1. The MDD model

For most multidimensional NMR spectra it is reasonable to as-
sume that a peak in the spectrum is completely described by its
one-dimensional line-shapes in all spectral dimensions [25,26].
Thus, the model of multi-dimensional decomposition (MDD) looks
for an approximation of a M-dimensional spectral matrix by the
sum of a small number of tensor products of one-dimensional
vectors:

SMDD _ Z/;ﬂa/;F] Q- /}FM—I ® [iFM (1)

where the model spectrum Sy;pp is the sum of fixed number of com-
ponents N. enumerated by index =1, ..., N.. Each component is gi-
ven by the product of normalized vectors *F" for every spectral
dimension m=1, ..., M, referred to below as shapes, and the com-
ponent amplitude #a. The term shape is introduced here in relation
to the spectral line shape; its several synonyms are present in the
literature, i.e. loads, modes, factors, etc. Symbol ® denotes the outer
product operation, which produces M-dimensional matrix from M
one-dimensional shapes.

MDD has been used since the early seventies in the variety of
fields under various names, such as parallel factor analysis (PARA-
FAC) [27], canonical decomposition [28], and three-way decompo-
sition [29]. The method was first applied in psychometrics and has
been successfully used for signal processing and data analysis in
functional magnetic resonance imaging (fMRI) [30,31], electro
encephalography (EEG) [2,32-36], and other fields [37,38].

2.2. Components and shapes

A simple approach is to think about a component as the repre-
sentation of a cross peak in a multi-dimensional spectrum. The
shapes then are traditional line-shapes of the peak in all dimen-
sions. The actual situation, however, is more complex, since the
components do not always have a one-to-one correspondence to
peaks. In general, a peak showing complex structure, e.g. in an
E.COSY spectrum, may require several components for its descrip-
tion. It also can be the other way around, as in the NOESY spectrum
- one component may accommodate several cross peaks. It is
important to emphasize that the MDD model does not make any
assumptions about the shape vectors ’F™. Thus it can be equally
well applied to data in the time or frequency domains, as well as
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