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Nomenclature

General

== 3~

complex unit, v—1

number of conformers

number of nuclei in the spin set

number of single quantum coherences of a spin system

Hilbert space

H™ Hamiltonian in the rth time slice (conformer depen-
dent)

Pq product functions of the Hilbert space (ow...q,
Bot...o ..., BB...B)

of nn nuclei, % l//,g)7 1//;:) kth eigenfunction of the Hamiltonian of the jth con-
N total number of nuclei, approximately N=n-m for a former at rth time slice
» aPP y p(t) density matrix in the Hilbert space at time ¢ (in the basis
non-mutual exchange fofi .
n number of product functions for a spin set of n spin-%2 of ¢ functions) . . .
nuclei i = 2" DPab (a,b) element of the density matrix in the basis of the ¢
t time éla sed since the start of detection functions
, Hme €'ap . . i kth eigenvalue of the Hamiltonian in Hilbert space
o indices of nuclei of a spin set " ] o ) W
Vy chemical shift of the uth nucleus (in Hz) Ugk linear combination coefﬁcnent of ¢q in ¥ ", <‘// | >
Jue coupling constant between nuclei ¢ and g (in Hz) Ut unitary matrix of the u lmear combination coefficients
T
fid(t)  fid of a time slice at time t, as a complex number ay) amplitude of the y,” ‘/’z transition
FID(t)  fid of one set of spins at time t A" matrix of the ay; amplitudes
F(t) total simulated fid at time ¢
Liouville space
Indices Lo the equivalent of the H™ Hamiltonian in Liouville space
a, b, ¢, d indices of the basis functions of the Hilbert space. Their Pr(AD) ile operator that propagates the density matrix by time
values are between 1 and 2" t
k, 1 indices of the eigenfunctions of the Hamiltonian. Their ~ Pe the basis fun}ftlons of tl}eLs.pacgllspanned bS}’} the single
values are between 1 and 2" quantum coherences of Liouville space, the ¢, — ¢p
e, f indices of the basis functions of the space spanned by 0 ol transitions or coherences ) ]
the single quantum coherences. Their values are be- ¥y, W, eigenfunctions of the jth conformer or rth time slice
tween 1 and M. As hyperindices, e =(a,b) and f=(c,d) a(t) the vector of the density matrix in Liouville space (time
(there are forbidden variations as well) dependent) in the basis of the &, vectors
D q indices of the eigenfunctions of the space spanned by o the vector of the density matrix at the rth exchange
the single quantum coherences. Their values are be- point, abbreviation for o(t")
tween 1 and M. As hyperindex p = (k,I) ael(t) the eth element of o(t) vector, the coefficient of @, in
jh indices of conformers. Their values are between 1 and m o(t)
r index of time slices and exchange points. The rth time gl abbreviation of g.(t")
slice starts at the (r — 1)th exchange point and last until ) the vector of the density matrix in Liouville space (time
Fhe rth. The Oth exchange point is the start of detection dependent) in the basis of the lI,(r vectors
s index of scans &r(t)  pth element of the &"(t) vector
(r) . . .
Kinetics wp pth characteristic frequency in the rth time slice
AD) the jth conformer of the spin set Qn diagonal matrix of the a) ) frequencies
[A9] concentration of A9 a;(,r) the amplitude of the pth elgentransmon in the rth time
¢n global time at the rth exchange point slice
At the time elapsed since the last exchange, At =t — ¢! AD row matrix of the a;’ amplitudes
AL length of the rth time slice, At(r)=h[(r) — D r row matrix of the I™ operator in the basis of the @
Kpj rate coefficient for the reaction A® — AV coherences
li decay coefficient of the AU) conformer . Cg? linear combination coefficient of (Da in l[ll(;')’ <"P1(Jr)|(be>
K; relative equilibrium concentration of A% conformer " unitary matrix of the c linear combination coefficients
Kin the probability of the formation of A" conformer during
decomposition of AY)
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1. Introduction

One often meets with dynamic processes while dealing with
experimental NMR spectroscopy [1-7]. Dynamic exchange may ap-

pear as the migration of acidic protons in a protic solution or as the

classical line broadening and coalescence phenomenon. The most
common way for studying the exchange process of complicated spin
systems is by simulation of the line broadening. This method is used
in several fields of chemistry, e.g. in studying the stability and
isomerization reactions of transition-metal and supramolecular



Download English Version:

https://daneshyari.com/en/article/5419734

Download Persian Version:

https://daneshyari.com/article/5419734

Daneshyari.com


https://daneshyari.com/en/article/5419734
https://daneshyari.com/article/5419734
https://daneshyari.com

