

Contents lists available at ScienceDirect

Progress in Nuclear Magnetic Resonance Spectroscopy

journal homepage: www.elsevier.com/locate/pnmrs

Solid-state NMR of quadrupolar halogen nuclei

Rebecca P. Chapman, Cory M. Widdifield, David L. Bryce*

Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ont., Canada K1N6N5

ARTICLE INFO

Article history: Received 31 March 2009 Accepted 5 May 2009 Available online 15 May 2009

Keywords: Chlorine Bromine Iodine Chemical shift Quadrupolar coupling constant Nuclear magnetic resonance NMR Tensors

Contents

1.	Introd	luction	216	
2.	. Theory, conventions, and chemical shift referencing			
	2.1.	Magnetic shielding interaction and chemical shifts	217	
		2.1.1. Haeberlen–Mehring–Spiess (HMS) convention	217	
		2.1.2. Herzfeld–Berger/Maryland convention	217	
	2.2.	Nuclear electric quadrupolar interaction	218	
	2.3.	NMR properties of chlorine, bromine, and iodine	219	
3.	Exper	imental methods for powders	220	
	3.1.	Magic-angle spinning and stationary samples	220	
	3.2.	Extraction of SSNMR parameters	221	
4.	Chlori	ine-35/37 experimental data	222	
	4.1.	Simple chlorides	222	
	4.2.	Chlorine in non-cubic inorganic and organometallic compounds	222	
	4.3.	Organic chlorides and hydrochlorides	225	
	4.4.	Perchlorates	227	
	4.5.	Glasses and sodalites	228	
5.	Bromi	ine-79/81 experimental data	229	
	5.1.	Simple cubic bromides	229	
	5.2.	Perbromates	231	
	5.3.	Other materials	231	

⁶ Corresponding author. Tel.: +1 613 562 5800x2018; fax: +1 613 562 5170.

E-mail address: dbryce@uottawa.ca (D.L. Bryce).

Abbreviations: Cp, cyclopentadienyl; Cp^{*}, pentamethylcyclopentadienyl; CP/MAS, cross-polarization magic-angle spinning; C_{Q_c} quadrupolar coupling constant; CS, chemical shift; CSA, chemical shift anisotropy; CT, central transition; δ_{11} , δ_{22} , δ_{33} , principal components of the chemical shift tensor; EFG, electric field gradient; η_{Q_c} quadrupolar asymmetry parameter; HMS, Haeberlen–Mehring–Spiess; IUPAC, International union of pure and applied chemistry; κ , skew of the magnetic shielding (or chemical shift) tensor; MAS, magic-angle spinning; MQMAS, multiple-quantum magic-angle spinning; NQR, nuclear quadrupole resonance; PAS, principal axis system; Q, nuclear electric quadrupole moment; QCPMG, quadrupolar Carr–Purcell–Meiboom–Gill.

^{0079-6565/\$ -} see front matter Crown Copyright @ 2009 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.pnmrs.2009.05.001

	6.	Iodine-127 experimental data	231	
	6.1	Simple cubic iodides	233	
	6.2	Periodates	233	
	6.3	Other materials	234	
7.	Ou	tlook and conclusions	234	
	Ac	Acknowledgements		
	Re	ferences	235	

1. Introduction

Chlorine, bromine, and iodine are elements of importance in a variety of inorganic and organic compounds. For example, chlorine plays an important biological role in vital chloride ion channels [1–4] and all three elements are present in a variety of inorganic catalysts [5,6]. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy of the chlorine-35/37, bromine-79/81, and iodine-127 nuclides is often challenging due to their NMR properties; however, the experiment is an excellent probe of the local halogen environment in many solid compounds and materials because of the technique's sensitivity to the local electronic and structural environments.

Chlorine-35/37 (I = 3/2), bromine-79/81 (I = 3/2), and iodine-127 (I = 5/2) are all NMR-active quadrupolar nuclei that are present in relatively high natural abundances (Table 1). As these nuclei are quadrupoles, the collection of high signal-to-noise (S/N) ratio SSNMR spectra may be difficult, especially for powder samples. In systems where the nucleus does not sit at a site of very high symmetry (e.g., octahedral or tetrahedral), the interaction between the guadrupole moment (*Q*) of the nucleus and the electric field gradient (EFG) tensor is a significant perturbing interaction to the Zeeman Hamiltonian, which broadens the resulting NMR spectrum of a powder. As halogen atoms do not generally sit at a site of high symmetry in the majority of systems of interest, guadrupolar broadening is generally the dominant contribution to the observed NMR line widths. In these cases, often only the central transition (CT, $m = \frac{1}{2} \leftrightarrow -\frac{1}{2}$) is observed; even this may be broadened to a significant extent, up to the order of magnitude of MHz in some cases. Further discussion of the NMR properties of the quadrupolar halogen nuclei is given in Section 2.3. Despite the challenges, there have been a number of significant studies using chlorine, bromine,

Table 1	l
---------	---

NMR properties of	the quadrupolar	halogens (chlorine,	, bromine, and iodine).	
-------------------	-----------------	---------------------	-------------------------	--

	Natural abundance/%	Ι	$\gamma/10^7~rad~T^{-1}~s^{-1}$	Ξ^{a}	Q/mb	$1-\gamma_{\infty}$ [17]	Relative CT line width ^b	IUPAC chemical shift reference
³⁵ Cl	75.78	3/2	2.624198	9.797909	-81.65(80)	42.0	1.34	0.1 mol/dm ³ NaCl in D ₂ O
³⁷ Cl	24.22	3/2	2.184368	8.155725	-64.35(64)	42.0	1.00	
⁷⁹ Br	50.69	3/2	6.725616	25.05390	313(3)	80	7.70	0.01 mol/dm ³ NaBr in D ₂ O
⁸¹ Br	49.31	3/2	7.249776	27.00658	262(3)	80	5.01	
¹²⁷ I	100.0	5/2	5.389573	20.00748	-696(12)	162	11.44	0.01 mol/dm ³ KI in D ₂ O

^a Resonance frequency, in MHz, in a magnetic field where ¹H resonates at exactly 100 MHz.

^b For a powder sample, based on Eq. (13).

^c From reference [177].

Fig. 1. Approximate chemical shift ranges for chlorine, bromine, and iodine. Scales are with respect to solid NaX (X = Cl, Br, and I) at 0 ppm. Note the different scale for each element.

Download English Version:

https://daneshyari.com/en/article/5419739

Download Persian Version:

https://daneshyari.com/article/5419739

Daneshyari.com