Contents lists available at ScienceDirect

Progress in Surface Science

journal homepage: www.elsevier.com/locate/progsurf

Review article Spin decoherence of magnetic atoms on surfaces F. Delgado^{a,b,c,*}, J. Fernández-Rossier^{d,1}

^a Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain ^b Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 Donostia-San Sebastián, Spain ^c IKERBASOUE. Basaue Foundation for Science. E-48013 Bilbao. Spain

^d QuantaLab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal

ARTICLE INFO

Article history:

Keywords: Decoherence Relaxation Kondo Adatoms Spin-phonon

ABSTRACT

We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time T_1 , while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time T_2 of an individual magnetic adatom. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin-phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction			41
1.1. The relevance of decoherence		levance of decoherence	41	
	1.2.	.2. Magnetic adatoms		
2.	Decoherence, a general overview			44
	2.1.	Quantu	Im dissipative dynamics in open quantum systems: decoherence and relaxation	44
		2.1.1.	Coherence as a basis dependent quantity	45
		2.1.2.	Coherence in a two level system (TLS)	46
		2.1.3.	Decoherence as entanglemenet with the bath	46
		2.1.4.	Decoherence as phase uncertainty induced by a stochastic field	47
	2.2.	Bloch–Redfield perturbative approach to the dissipative dynamics		48
2.3. Bloch equation for a 2-level system		equation for a 2-level system	50	
	2.4.	Decoherence as a limit for spectral resolution in magnetic resonance		

http://dx.doi.org/10.1016/j.progsurf.2016.12.001

0079-6816/© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.

E-mail address: fernando.delgadoa@ehu.eus (F. Delgado).

¹ Departamento de Física Aplicada, Universidad de Alicante, Spain.

	2.5. The quantum to classical transition and the spin-boson model	52
	2.6. Other approaches to the relaxation and decoherence of spins	53
3.	Spin Hamiltonian for magnetic adatoms	. 53
	3.1. Single spin Hamiltonian	54
	3.1.1. Integer vs half integer spins	. 54
	3.2. Pseudo-spin 1/2 approximation	55
	3.3. Hamiltonian for multi-spin systems	56
4.	Decoherence due to Kondo exchange	. 57
	4.1. Kondo exchange interaction	57
	4.1.1. Kondo Hamiltonian in the two-level approximation	. 57
	4.2. General expressions for T_1 and T_2 due to Kondo exchange	58
	4.3. Decoherence of a single degenerate spin.	59
	4.3.1. Decoherence of a single spin with degenerate spectrum: perturbative results	. 59
	4.3.2 Decoherence of a single spin with degenerate spectrum: non-perturbative results	59
	4.3.3. Quasiparticle phase shift as the origin of the pure dephasing	. 60
	4.3.4. Decoherence for the degenerate doublet: the choice of basis set	. 61
	4.4. Non-degenerate two level systems	. 62
	4.4.1 Renormalization of the OST splitting	62
	442 Perturbative dynamics of the non-degenerate TIS	63
	4.4.3 Density matrix in the classical basis for the split TIS	. 64
	4.4 Non-nerturbative derivation of the decoherence assisted switching	64
	4.5 Relaxation and decoherence in spin chains and ladders	65
	451 T _o for broken symmetry states in soin chains	65
	4.5.2 The quantum to classical transitions in spin chains	66
5	Other snin relaxation mechanisms: nhotons inhonons and nuclear snins	. 00
5.	51 Ship-honon coulding	. 07
	5.1 Spin-phonon coupling	68
	5.2. Sipir relayation and decoherence due to Johnson poice	60
6	S.S. Spin relaxation and deconcretice due to joinison noise	03
0.	5.1 Single spin Indestic Electron Tunnelling Spectroscopy	. 70
	6.2 Spin polarized STM	70
	6.2. Matheds to determine T	70
	6.4 Determination of T via EDP STM	70
	6.5 Duratum technologies: quartum concers with magnetic adateme	/1
7	0.3. Qualitum technologies, qualitum sensors with magnetic auatoms	72
7.		. 72
	Annowledgements	. / S
	Appendix A. Bloch-Reduced tensor $k_{mm',nn'}$. 75
	A.1. Population scattering $1/T_1 = 1_{n,m}$.	در 4
	A.2. Decompetence lates 1/12	74
	A.5. Ellergy simils	74
	Appendix B. Bloch-Redified tensor for the kondo coupling	. 74
	b.1. BIOCIT-REGLIERIG LEIISOF OF a DSEUDO-SPIT 1/2	75
	b.2. Relation between the <i>M</i> -matrix and the Bioch-Redmela tensor.	/6
	Appendix C. Bosonic representation of the excitations of the Fermi gas and the spin-boson model	. /6
	Appendix D. Steady-state solution of the Bloch equation for the ILS	. //
	kelerences	. 78

1. Introduction

Major technological revolutions have occurred when the humankind has been able to harness natural resources, such as fire, electricity or nuclear energy. We are now in the verge of the so called second quantum revolution, that aims to harness two of the weirdest natural resources, coherence and entanglement. This is a tall order that calls for a great dose of ingenuity, because keeping quantum states in coherent superpositions that could be used towards our advantage requires to defeat a rather powerful enemy, the infamous decoherence. Here, we review the phenomenon of spin decoherence in the context of magnetic atoms deposited on surfaces.

1.1. The relevance of decoherence

The interaction of quantum spins with their environment introduces relaxation and decoherence in the otherwise fully coherent evolution of ideal closed quantum systems [1]. Spin relaxation and decoherence play a central role in many branches of physics. In the case of nuclear spins, the time scales associated to energy relaxation and decoherence, T_1 and T_2 respectively, provide a very meaningful information of the environment that forms the basis of magnetic resonance imag-

Download English Version:

https://daneshyari.com/en/article/5419918

Download Persian Version:

https://daneshyari.com/article/5419918

Daneshyari.com