

Contents lists available at ScienceDirect

Progress in Surface Science

journal homepage: www.elsevier.com/locate/progsurf

Review

Tunnelling junctions with additional degrees of freedom: An extended toolbox of scanning probe microscopy

Christian Wagner^{a,b}, Ruslan Temirov^{a,b,*}

^a Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
^b Jülich Aachen Research Alliance (JARA) – Fundamentals of Future Information Technology, 52425 Jülich, Germany

ARTICLE INFO

Commissioning Editor: H. Petek

Keywords:

Scanning probe microscopy Scanning tunnelling microscopy Atomic force microscopy Functionalized STM/AFM tips Single molecule manipulation PTCDA

ABSTRACT

Considering studies of molecular adsorption we review recent developments in the field of scanning probe microscopy and in particular in scanning tunnelling microscopy, concentrating on the progress that has been achieved by controlled decoration of the microscope tip. A view is presented according to which the tip decoration generally introduces additional degrees of freedom into the scanning junction and thus extends its functionality. In particular tips decorated with atomic point-like particles may attain the additional function of a force sensor which is realized through the degrees of freedom associated with the relative position of the decorating probe-particle with respect to the tip. It is shown how the force sensor function of such tips helps when studying large molecular adsorbates. Further prospects of more complex junctions equipped with numerous internal degrees of freedom are discussed. It is argued that the main problem impeding the utilization of such junctions is related to their control. An approach towards a higher degree of control is presented that is based on the analysis of single molecule manipulation experiments.

© 2015 Elsevier Ltd. All rights reserved.

* Corresponding author at: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany. E-mail address: r.temirov@fz-juelich.de (R. Temirov).

http://dx.doi.org/10.1016/j.progsurf.2015.01.001 0079-6816/© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction	195
2.	The foundations of STM		
3.	Combination of the STM with AFM		
4.	Various types of tip decoration 1		
5.	Single atom sensor-transducer microscopy		
	5.1.	STM with H ₂ -decorated tips	200
	5.2.	H ₂ tip decoration	202
	5.3.	STM with other types of decorated tips	202
	5.4.	Experimental identification of the sensor-transducer function of the decorated STM tips	204
	5.5.	Simulations of the STM and AFM imaging with decorated tips	207
	5.6.	Dynamic sensor-transducer function	209
	5.7.	Summary of single atom sensor-transducer microscopy	210
6.	SPM j	unctions of higher complexity	211
	6.1.	SPM manipulation of PTCDA.	212
	6.2.	Force field model of the SPM lifting of an individual PTCDA molecule	212
	6.3.	Fitting of the experimental data	213
	6.4.	A more realistic model of PTCDA lifting with the NC-AFM/STM tip	215
	6.5.	Hand-controlled molecular manipulation	217
7.	Conclusions		
	Acknowledgement		219
	References		219

Nomenclature

AFM	atomic force microscope(y)
CO	carbon monoxide
DFT	density functional theory
DOF	degree(s) of freedom
DOS	density of states
HBS	high-bias state
HOMO	highest occupied molecular orbital
IETS	inelastic electron tunnelling spectroscopy
LBS	low-bias state
LDOS	local density of states
L–J	Lennard–Jones
LT STM	low-temperature scanning tunnelling microscope(y)
LUMO	lowest unoccupied molecular orbital
NC AFM	non-contact atomic force microscope(y)
NTCDA	naphthalene tetracarboxylic dianhydride
PP	probe-particle
PTCDA	perylene tetracarboxylic dianhydride
SPM	scanning probe microscope(y)
SP STM	spin-polarized scanning tunnelling microscopy
STHM	scanning tunnelling hydrogen microscopy
STM	scanning tunnelling microscope(y)
TED	total electron density
TTCDA	terrylene tetracarboxylic dianhydride
UHV	ultra-high vacuum
vdW	van der Waals

Download English Version:

https://daneshyari.com/en/article/5419940

Download Persian Version:

https://daneshyari.com/article/5419940

Daneshyari.com