

Contents lists available at ScienceDirect

Progress in Surface Science

journal homepage: www.elsevier.com/locate/progsurf

Review

Physisorption and ortho-para conversion of molecular hydrogen on solid surfaces

K. Fukutani*, T. Sugimoto

Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan Department of Chemistry, School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

ARTICLE INFO

Keywords: Molecular hydrogen Ortho-para conversion Physisorption

ABSTRACT

Molecular hydrogen exists in nuclear-spin isomers of ortho and para species according to the total nuclear spin. These species are correlated to the rotational states with even and odd rotational quantum numbers because of the symmetry of the total wavefunction with respect to the permutation of the two nuclei. Although interconversion between the ortho and para states is extremely slow in an isolated state, the conversion is promoted in a physisorption state via interaction with surfaces of not only magnetic but also diamagnetic materials. In a physisorption state, the rotational motion of hydrogen molecules is modified due to the potential anisotropy. The physisorption properties and interconversion rate of the ortho and para hydrogen have recently been investigated on well-defined surfaces, which allow detailed comparison with theory. Furthermore, relative abundance of the ortho and para hydrogen in astronomical circumstances has been reported in recent years, which often shows a value out of equilibrium with the environment temperature. Physisorption and ortho-para conversion on the surfaces of interstellar media are expected to enable deeper understanding of astronomical phenomena. In this article, we review recent progress of experimental and theoretical studies on the physisorption and ortho-para conversion of molecular hydrogen and its relevance to the recent astronomical observation. © 2013 Elsevier Ltd. All rights reserved.

* Corresponding author.

0079-6816/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.progsurf.2013.09.001

E-mail addresses: fukutani@iis.u-tokyo.ac.jp (K. Fukutani), toshiki@kuchem.kyoto-u.ac.jp (T. Sugimoto).

Contents

1.	Introduction			280
2.	Fund	amental	features of molecular hydrogen	282
	2.1.	Electro	nic, rotational, and nuclear-spin states: classification into nuclear-spin isomers	282
	2.2.	Adsorp	tion on solid surfaces	287
		2.2.1.	Adsorption potential	287
		2.2.2.	Physisorption energy of ortho and para species	291
		2.2.3.	Sticking probability	292
3.	Ortho-para conversion – theoretical aspect			294
	3.1.	Gas ph	ase conversion mechanism	294
		3.1.1.	Radiative transition	294
		3.1.2.	Proton exchange	295
	3.2.	Basic in	nteraction inducing ortho-para conversion	295
	3.3.	First-o	rder perturbation	296
		3.3.1.	Perturbation Hamiltonian	296
		3.3.2.	Transition probability	299
	3.4.	Second	l-order perturbation	301
	3.5.	Higher	-order perturbation	304
	3.6.	Isotope	e effect	306
4.	Surfa	ce-sensit	tive experimental technique	306
5.	Physisorption and ortho-para conversion on various surfaces: experimental studies			310
	5.1.	Diama	gnetic metal surface	312
		5.1.1.	Clean Cu surface	312
		5.1.2.	Clean Ag surface	315
		5.1.3.	Impurity-adsorbed surface	319
		5.1.4.	Graphite	321
	5.2.	Diama	gnetic insulator surface	323
		5.2.1.	Ice surfaces	323
		522	Si	328
		5.2.3	Metal-organic framework	328
		524	Impurity-adsorbed Ice surfaces	329
6.	Astro	nomical	relevance	330
	6.1	Hydros	ven in Molecular clouds: importance of surface processes	330
	6.2.	Astron	omical observation	331
		6.2.1.	Light emission of H ₂	331
		6.2.2.	Observational spectra	
	6.3	Ortho-r	para ratio of nascent H_2 and ortho-para conversion	338
	0.51	6.3.1.	H_2 formation	338
		632	Ortho-para conversion	340
7.	Concluding remarks			340
	Acknowledgements			341
	Appendix A. Matrix element of \vec{i} .			341
	Anne	ndix R	Fermi contact interaction	341
	Appendix C. Spin–orbit interaction.		Spin-orbit interaction	347
	Refe	rences		342

1. Introduction

Hydrogen is the most abundant element in the universe, and ubiquitous in our society. While atomic hydrogen is chemically reactive because of the unpaired electron, molecular hydrogen is rather inert due to its closed shell nature. A remarkable feature of molecular hydrogen is that it is classified into nuclear-spin isomers designated as ortho and para species according to the total nuclear spin [1–3]. The nuclear spins of proton and deuteron are 1/2 and 1, respectively. Since the indistinguishability of identical nuclei dictates that the total wave function be antisymmetric or symmetric with respect to

Download English Version:

https://daneshyari.com/en/article/5419950

Download Persian Version:

https://daneshyari.com/article/5419950

Daneshyari.com