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ARTICLE INFO ABSTRACT

Commisioning Editor: P.A. Thiel Silicon is by far the most important semiconductor material in the
microelectronic industry mostly due to the high quality of the

K-eivwords: Si/SiO, interface. Consequently, applications requiring chemical

Silicon surfaces functionalization of Si substrates have focused on molecular
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rafting of SiO, surfaces. Unfortunately, there are practical prob-
Organic functionalization & & 2 y P P

Self-assembled monolayers lems affectipg homogengity and stability of many organic layers
Surface activation grafted on SiO,, such as silanes and phosphonates, related to poly-
Nanopatterning merization and hydrolysis of Si-O-Si and Si-O-P bonds. These
issues have stimulated efforts in grafting functional molecules on
oxide-free Si surfaces, mostly with wet chemical processes. This
review focuses therefore directly on wet chemical surface func-
tionalization of oxide-free Si surfaces, starting from H-terminated
Si surfaces. The main preparation methods of oxide-free H-termi-
nated Si and their stability are first summarized. Functionalization
is then classified into indirect substitution of H-termination by
functional organic molecules, such as hydrosilylation, and direct
substitution by other atoms (e.g. halogens) or small functional
groups (e.g. OH, NH;) that can be used for further reaction. An
emphasis is placed on a recently discovered method to produce a
nanopattern of functional groups on otherwise oxide-free, H-
terminated and atomically flat Si(111) surfaces. Such model
surfaces are particularly interesting because they make it possible
to derive fundamental knowledge of surface chemical reactions.
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1. Introduction

Silicon has been dominating the microelectronic industry in part because it is plentiful and rela-
tively cheap and can be produced with high purity, but mostly because of the chemical and electrical
stability of the interface with its oxide [1,2]. In fact, the low concentration of electrical defect states at
the Si/SiO, interface has been a strong driver to use Si for future devices such as electrical biosensors
and photovoltaic components [1,2].

Much work has therefore been devoted to modifying SiO, surfaces by grafting molecules via OH
groups that typically terminate SiO, surfaces after wet chemical cleaning [3,4]. There are however
two rather fundamental issues associated with modification of SiO, surfaces. The first is the very high
activation energy for the reaction a number of species with surface OH groups, most notoriously for
grafting phosphonic acid molecules [5]. The second is the poor chemical stability of the Si-O-Si bond
at the interface between the organic layer and SiO,, due to facile hydrolysis under neutral or basic pH
conditions [5].

Two main methods have been used to functionalize SiO,. Silanization [6,7] has been the first meth-
od to graft organics to SiO,, but this method often suffers from the low surface OH group content of the
Si surface oxide [3,4]. Indeed, comprehensive Si surface coverage by silanization derives from amor-
phous siloxane polymerization, and the degree of siloxane cross-condensation depends critically on
the water content of the deposition solvent [7]. Attaining structural order in such films is also prob-
lematic [5].

Alternatively, phosphonate molecules have been grafted on SiO, using a method called tethering by
aggregation and growth or T-BAG [5]. During the T-BAG process, a phosphonic acid is initially weakly
physisorbed from a solution onto the oxide substrate forming a reasonably well-ordered layer thanks
to the interaction of the phosphonate headgroups of adjacent molecules, then chemically attached by
a heating step, during which Si-O-P bonds are formed. The sample is then typically rinsed to remove
any remaining physisorbed multilayers present on the surface on top of the chemisorbed SAM. T-BAG
is a simple and reliable method to grow SAMs with phosphonate bonding on oxide surfaces. The phys-
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