Contents lists available at ScienceDirect

Solid State Nuclear Magnetic Resonance

journal homepage: www.elsevier.com/locate/ssnmr

Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond

Ayesha Wickramasinghe^a, Songlin Wang^a, Isamu Matsuda^a, Yusuke Nishiyama^{c,d}, Takahiro Nemoto^c, Yuki Endo^c, Yoshitaka Ishii^{a,b,*}

^a Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States

^b Center for Structural Biology, University of Illinois at Chicago, Chicago, IL 60607, United States

^c JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan

^d RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan

ARTICLE INFO

Article history: Received 12 September 2015 Received in revised form 1 October 2015 Accepted 3 October 2015 Available online 8 October 2015

Keywords: ¹H decoupling Solid-state NMR Ultra-fast MAS WALTZ Composite-pulse decoupling Micro-analysis ¹H detection

ABSTRACT

This article describes recent trends of high-field solid-state NMR (SSNMR) experiments for small organic molecules and biomolecules using ¹³C and ¹⁵N CPMAS under ultra-fast MAS at a spinning speed (ν_R) of 80-100 kHz. First, we illustrate major differences between a modern low-power RF scheme using UFMAS in an ultra-high field and a traditional CPMAS scheme using a moderate sample spinning in a lower field. Features and sensitivity advantage of a low-power RF scheme using UFMAS and a small sample coil are summarized for CPMAS-based experiments. Our 1D ¹³C CPMAS experiments for uniformly ¹³C- and $^{15}\text{N}\text{-labeled}$ alanine demonstrated that the sensitivity per given sample amount obtained at ν_{R} of 100 kHz and a ¹H NMR frequency ($\nu_{\rm H}$) of 750.1 MHz is \sim 10 fold higher than that of a traditional CPMAS experiment obtained at $\nu_{\rm R}$ of 20 kHz and $\nu_{\rm H}$ of 400.2 MHz. A comparison of different ¹H-decoupling schemes in CPMAS at $\nu_{\rm R}$ of 100 kHz for the same sample demonstrated that low-power WALTZ-16 decoupling unexpectedly displayed superior performance over traditional low-power schemes designed for SSNMR such as TPPM and XiX in a range of decoupling field strengths of 5–20 kHz. Excellent ¹H decoupling performance of WALTZ-16 was confirmed on a protein microcrystal sample of GB1 at $\nu_{\rm R}$ of 80 kHz. We also discuss the feasibility of a SSNMR microanalysis of a GB1 protein sample in a scale of 1 nmol to 80 nmol by 1 H-detected 2D 15 N/ 1 H SSNMR by a synergetic use of a high field, a low-power RF scheme, a paramagnetic-assisted condensed data collection (PACC), and UFMAS.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

High-resolution ¹³C solid-state NMR (SSNMR) using a CPMAS scheme has marked a milestone of 40 years since the scheme was originally introduced by Schaefer and Stejskal for characterization of polymers and other organic systems at a spinning speed of 3 kHz [1]. The work not only demonstrated a creative integration of earlier inventions of cross polarization (CP) [2] and magic-angle-spinning (MAS) [3], but also involved development of hardware such as a spinning system (see Fig. 1; a photograph courtesy of Prof. Schaefer). With enormous progress after this discovery, high-resolution SSNMR spectroscopy is generally considered as a matured field. Nevertheless, recent advances in SSNMR have markedly improved its capabilities. In particular, novel

2 mail daaress. yisinie dieledd (1. isini).

http://dx.doi.org/10.1016/j.ssnmr.2015.10.002 0926-2040/© 2015 Elsevier Inc. All rights reserved. developments for fast MAS systems have increased the available spinning speed from 30 kHz to 100 kHz or higher over the past decade [4-11]. Engineering needs for ultra-fast MAS (UFMAS) at 80 kHz or higher demand a small MAS rotor having a diameter of 1 mm or less (see Fig. 2). Because of its very restricted sample volume ($\leq 1 \mu L$), there was a natural skepticism about the sensitivity and feasibility of biomolecular SSNMR using such a UFMAS system in the NMR community. Nevertheless, recent studies have demonstrated that SSNMR using UFMAS at 80-100 kHz in a high field offers a practical tool for structural biology [11–13]. These findings signify a crucial development in biological SSNMR as a production of a protein and other biological sample in a large quantity is often prohibitive for systems of biological interest. The new development was prompted by a series of sensitivity enhancement approaches that are compatible with UFMAS. These approaches include ¹H indirect detection [5,14–18], paramagnetic assisted condensed data collection (PACC) [6,19-22], usage of a high field [12,13,23-25], and deuteration and other unique isotope

^{*} Corresponding author at: Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States. *E-mail address:* yishii@uic.edu (Y. Ishii).

Fig. 1. Spinning system for the original CPMAS experiment [1]. The photograph provided courtesy of Prof. Jacob Schaefer at the Washington University in St. Louis. "The rotor was suspended from two phosphor–bronze wires held to the "stator" by teflon tape. A pipette brought the drive air in. A rotor would only last through 2 or 3 stop–start cycles. It took Ed (Stejskal) a day to make a rotor," according to a note from Prof. Schaefer.

Fig. 2. A picture of three MAS rotors used for this study in a comparison with a metric ruler. (Left) JEOL 0.75-mm rotor, (middle) JEOL 1-mm rotor, and (right) Varian 2.5-mm rotor.

labeling schemes [12,18,26,27]. Importantly, sensitivity enhancement factors by these approaches can be compounded since many of these methods can be integrated together without any major interferences. Thus, despite a limited sample volume, recent studies using UFMAS indicate unparalleled mass-sensitivity (i.e. sensitivity per sample amount) for a 3D SSNMR analysis of a masslimited protein sample [12,13]. Moreover, unlike dynamic nuclear polarization (DNP) approach [28]. UFMAS-based methods offer an analysis of a biological sample in a hydrated state. Another important aspect in SSNMR spectroscopy using UFMAS is that a drastic change in the spin physics allows one to explore new types of pulse sequences such as low-power ¹H decoupling [14,15,29,30] and low-power cross-polarization sequences [6,8,31].

In this article, we discuss the present status and a prospect of biomolecular SSNMR using CPMAS under UFMAS. We review how basic building blocks of a CPMAS scheme such as CP and ¹H decoupling have been evolved under UFMAS. Then, we discuss an alternative ¹H low-power decoupling scheme using compositepulse decoupling schemes such as WALTZ-16, which were previously ineffective for ¹H decoupling in SSNMR. We also demonstrate that a SSNMR microanalysis of proteins in a 1–100 nmol scale is feasible through examining the sensitivity and resolution of ¹H-detected 2D ¹H/¹⁵N SSNMR experiment for a GB1 microcrystalline sample under UFMAS.

2. Material and methods

Unless otherwise mentioned, all the SSNMR experiments were performed on a Bruker Avance III 750 MHz spectrometer at the UIC Center for Structural Biology using a JEOL 0.75-mm or 1-mm ¹H/¹³C/¹⁵N/²H quad-resonance MAS probe. The experiment in Fig. 4b was performed on a Bruker Avance III 400 MHz spectrometer using a homebuilt 2.5-mm ¹H/¹³C/¹⁵N CPMAS probe. The sample temperatures were maintained at \sim 15 °C by applying a cooled VT air at -15° C in order to compensate for the temperature increase by sample spinning at 100 kHz. Fig. 3 shows (a) a CPMAS pulse sequence for the UFMAS experiment and (b) the sequence for the conventional CPMAS experiment in Fig. 4b. In the 1D ¹³C CPMAS experiments using UFMAS, ¹³C spin polarization was prepared with double-quantum adiabatic cross polarization (DQ-CP) using an amplitude-modulated shaped pulse with an upward tangential ramp for the ¹³C channel and a rectangular pulse for the ¹H channel [8]. The ¹³C RF field strength was swept from 55 kHz to 95 kHz with the average rf field at $\sim 3\nu_{\rm R}/4$ while the ¹H RF field amplitude was set kept constant at 25 kHz ($\sim \nu_{\rm R}/4$), where the sum of the average RF fields was matched to $\nu_{\rm R}$ for DQ-CP, where $\nu_{\rm R}$ denotes a spinning speed. The ¹³C signals were acquired under low-power WALTZ-16 ¹H decoupling [32] at 5 kHz in Fig. 4a. The same CP sequence was used for Figs. 4-6 with

Fig. 3. Pulse sequences of (a) a low-power CP scheme suited for a UFMAS condition and (b) a high-power CP scheme used for a conventional CPMAS.

Download English Version:

https://daneshyari.com/en/article/5420291

Download Persian Version:

https://daneshyari.com/article/5420291

Daneshyari.com