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Spin counting NMR is an experimental technique that allows a determination of the size and time
evolution of networks of dipolar coupled nuclear spins. This work reports on an average Hamiltonian
treatment of two spin counting sequences and compares the efficiency of the two cycles in the presence of
flip errors, RF inhomogeneity, phase transients, phase errors, and offset interactions commonly present in
NMR experiments. Simulations on small quantum systems performed using the two cycles reveal the
effects of pulse imperfections on the resulting multiple quantum spectra, in qualitative agreement with the
average Hamiltonian calculations. Experimental results on adamantane are presented, demonstrating
differences in the two sequences in the presence of pulse errors.
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1. Introduction

The free induction decay of an ensemble of dipolar-coupled
spin-1/2 nuclei corresponds to the evolution of a single-spin,
single-quantum state into multiple-spin, single-quantum terms.
These multiple spin correlations are not directly detected in NMR
experiments, however spin counting NMR [1] allows one to
monitor their complex time evolution under a modified dipolar
Hamiltonian. This modified dipolar Hamiltonian is applied using a
well-defined pulse sequence. Because of its ability to measure the
number of coupled spins in a dipolar coupled network, the spin
counting method has been used to determine the effective spin
cluster size in a variety of materials including polycrystalline
samples [2], liquid crystals [3], and films [4]. The methodology
has more recently been extended to study spin dynamics in quasi-
1D spin chains [5] and cubic single crystals [6,7]. In the case of
quasi-1D spin chains these pulse sequences are also used to
monitor magnetization transport [8]. These techniques and their
results have been used for theoretical studies of many-body spin
dynamics [9,10] and to probe decoherence [11,12], i.e. for quantum
computing. The decoherence experiments also implicitly probe the
time-reversal properties of the pulse sequence, and understanding
their sensitivity to errors may lead to improvements in their
efficacy.

The aim of this work is to evaluate the contribution of pulse
errors to the eight-pulse sequences shown in Fig. 1b and ¢, which
are commonly used in multiple quantum spin-counting NMR.
Since the experiments involve repeating either of these two pulse
sequences many times, even small imperfections in the RF pulse
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sequence may lead to large deviations from the ideal Hamiltonians
—these errors can destroy the resulting quality of the multiple
quantum spectra. Because of the use of these pulse sequences
to encode thousands of spins [11] or more, eventually intrinsic
limitations due to pulse errors should become important. In the
section that follows we provide a brief overview of average
Hamiltonian theory [13] which will be used to help quantify the
effects of pulse errors. In Section 3 we present the results obtained
from average Hamiltonian theory for the two sequences, as well as
results of simulations and experiments which support the analy-
tical results.

As a 2D sequence the multiple quantum NMR experiment can
be separated into preparation, evolution, mixing, and detection
periods (see also Fig. 1a). During the preparation period, under
ideal conditions, the nuclear spins become correlated by evolving
the system under an average (double quantum) Hamiltonian (in
units of rad/s)

0 1

Hp= -5 X wp(I{ I =I5 T) (1)
i<k
where wp is the dipolar coupling strength given by
pohy? 2
wp = Sﬂrfk (1-3 cos“6jy). 2)

In the above equation, rj is the internuclear distance and 6y is the
angle between the vector 1 and the external magnetic field By
[14]. Multiple quantum coherences created during the preparation
period are transformed into an observable single quantum opera-
tor during the mixing period by applying a pulse sequence whose
average Hamiltonian is the negative of Eq. (1), i.e.

(0 1 —
Hom=5 T ool 1= ). 3)
i<k


www.elsevier.com/locate/ssnmr
www.elsevier.com/locate/ssnmr
http://dx.doi.org/10.1016/j.ssnmr.2013.03.003
http://dx.doi.org/10.1016/j.ssnmr.2013.03.003
http://dx.doi.org/10.1016/j.ssnmr.2013.03.003
mailto:gboutis@brooklyn.cuny.edu
http://dx.doi.org/10.1016/j.ssnmr.2013.03.003

28

Preparation

Evolution

Y. Zelenova et al. / Solid State Nuclear Magnetic Resonance 53 (2013) 27-37

Mixing

Detection

s,

S S, S S Sy Oy

S o [N

S,

S Sy O Sy Ois S5 O

Fig. 1. (a) The spin counting NMR experiment as a 2D experiment can be divided into four periods (preparation, evolution, mixing, and detection). Multiple-quantum
coherences are built up during the preparation period. The total preparation period is generated by repeating the RF pulse sequence shown in (b) or (c) m times. The RF pulse
cycle of the preparation period consists of eight z/2 pulses along the x-axis with widths t,, = 2« and delays between pulses 4 and A’ =24 + t,,. The total duration of either

cycle is t. =24z, and 2t =A + ty,.

During the preparation stage, one can view multiple quantum
coherence as elements of the density matrix

p(t) = exp(~iHpt)p(0)exp(iHpt). )

In the development of off-diagonal elements of p each coupled
pair may be described using a set of stationary states [j)(k|. In the
liXk| notation p(t) may be written as

p(t) = X(jlp(0)Ik)exp[~i(wj—wi)t] )<k (5)
where w; is the eigenfrequency that characterizes eigenstates of
the dipolar Hamiltonian. Writing the density operator as a power
series expansion gives

— 2 — —
()= p(O) + t]p(0), DI 5, 1p(0). Hip), g + -~ ®)

The second and higher order terms of the above expansion become
significant as the system evolves forward in time under Hp; the
nested commutators create product terms which reflect the number
N of interacting spins and depend on the magnitude of wp and the
evolution time. Following the mixing period, the magnetization
observed at the point of detection carries all information about the
spin system which is governed by the propagators U = exp(—iﬁgtp)
and V = exp(—iﬁg‘m tm) = exp(iH ptyy) during the preparation (p) and
mixing (m) periods, respectively. The detected signal may be written
as

S(t) = Tr{lp(t)} = Tr{l,Vexp(—iHpt)U" p(0)Uexp(iHpt)V}, )

where Hp represents the homonuclear dipolar Hamiltonian defined
in Section 2. By experimentally imposing a phase modulation ¢ on
all of the applied pulses during the preparation period the propa-
gator U may be recast as U, =exp(ipl,)Uexp(—ipl;) and the opera-
tion (jlU"L,U"|k) may be written as matrix elements Mj;. The signal
intensity then becomes a function of the applied phase shift, ¢, of

the preparation period with respect to the mixing period. The
intensity of any given multiple coherence order, n, may then be
measured by performing a Fourier transformation as a function of
this phase shift

S(t) = Y IMji I exp(ing)exp[—i(wj—w)t]. ®)

2. Average Hamiltonian theory

In the following we provide a review of the theoretical
formalism used to analyze the effects of pulse artifacts in the
two multiple pulse sequences considered; the discussion follows
closely from [15]. We consider the nuclear spin system in the
Larmor rotating frame. In this frame the Hamiltonian has the form

H(t) = Hi¢(t) + Hine- )
In the above expression, H(t) is the Hamiltonian from the RF

pulse sequence applied to the sample and Hj, is the internal
Hamiltonian which may be written as
Hine =Ho + Hp (10)
where Hp is a resonance offset Hamiltonian or chemical shift
Hamiltonian. The homonuclear dipolar interaction, Hp, is given by
Hp=-Y opGEI-F - 1), 11

i<k

The equation of motion in the rotating frame is given by the
Liouville-von Neumann equation

.d
i =[H.pl (12)

To determine the effective Hamiltonian of a series of pulses and
periods of free evolution one makes a transformation into the
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