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a b s t r a c t

We present a new program for the exact simulation of solid-state NMR spectra of quadrupolar nuclei in

stationary powdered samples which employs diagonalization of the combined Zeeman-quadrupolar

Hamiltonian. The program, which we call QUEST (QUadrupolar Exact SofTware), can simulate NMR

spectra over the full regime of Larmor and quadrupolar frequency ratios, which encompasses scenarios

ranging from high-field NMR to nuclear quadrupole resonance (NQR, where the Larmor frequency is

zero) and does not make use of approximations when treating the quadrupolar interaction. With the

use of the fast powder averaging scheme of Alderman, Solum, and Grant [51], exact NMR spectral

simulations are only marginally slower than the second-order perturbation theory counterpart.

The program, which uses a graphical user interface, also incorporates chemical shift anisotropy and

non-coincident chemical shift and quadrupolar tensor frames. The program is validated against newly-

acquired experimental data through several examples including: the low-field 79/81Br NMR spectra of

CaBr2, the 14N overtone NMR spectrum of glycine, the 187Re NQR spectra of Re2(CO)10, and lastly the 127I

overtone NQR spectrum of SrI2, which, to the best of our knowledge, represents the first direct

acquisition of an overtone NQR spectrum for a powdered sample.

& 2012 Elsevier Inc. All rights reserved.

1. Introduction

With the advent of higher field persistent magnets and the
development of special pulse schemes designed to enhance the
sensitivity of solid-state nuclear magnetic resonance (NMR)
experiments, nuclei that were once considered highly impractical
to study by NMR are now being studied in the context of a wide
range of applications [1–12]. This is particularly true for quad-
rupolar nuclei (I41/2), which comprise nearly 75% of the stable
NMR-active nuclei in the periodic table. Quadrupolar nuclei
possess a non-spherical charge distribution which can be quanti-
fied by a scalar value known as the nuclear electric quadrupole
moment (Q). This moment interacts with the electric field
gradient (EFG) generated by the nuclei and electrons around the
probe nucleus, resulting in the so-called quadrupolar interaction.

The quadrupolar interaction operates in a molecule- or lattice-
based frame, whereas the fundamental Zeeman interaction com-
mon to most NMR experiments operates in the lab frame which is
imposed by an applied magnetic field. These two interactions
have fundamentally different and independent foundations and
two forms of nuclear resonance spectroscopy can be employed to
study these nuclei. In nuclear quadrupole resonance (NQR), the

quadrupolar interaction is the dominant interaction, while in
NMR spectroscopy, the Zeeman interaction is assumed to be
dominant. It is well known that when performing magnetic
resonance experiments on real samples which possess quadru-
polar nuclei, the intermediate region is ill-defined [13–17]. It has
been common practice to use perturbation theory to analyze the
spectra [18,19], although these methods may not be valid in
certain circumstances. As the solid-state NMR community pushes
towards the study of nuclei with ever larger quadrupolar inter-
actions (via large-Q nuclei and/or large EFGs) or smaller Zeeman
interactions (for low-g nuclei, where g is the magnetogyric ratio
of the nucleus), perturbation theory treatments for isolated spins
may no longer be useful and the use of exact solutions will
become necessary in some cases. This has been demonstrated for
some 127I, 185/187Re, 35/37Cl, and 27Al NMR spectra where a
second-order perturbation theory model under the high-field
approximation was shown to break down [1,2,20–22]. Exact
NMR/NQR solutions are also being used to study a wide range
of interesting systems [23–25].

To our knowledge, there is no generally available and user-
friendly software which treats the Zeeman-quadrupolar Hamilto-
nian exactly, and includes contributions from chemical shift
anisotropy. We have then decided, in conjunction with much of
the work being done in our lab [21,26], to design a fast and exact
NMR/NQR simulation program with a graphical user interface
(GUI) in order to simulate spectra. In this paper, we shall briefly
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recapitulate the relevant theory, describe the user interface of our
QUadrupolar Exact SofTware (QUEST), as well as show examples
of simulations from NMR, NQR, and NMR/NQR overtone transi-
tions, including the first literature example of the direct acquisi-
tion of overtone NQR spectra in a powdered sample.

2. Theory

The total spin Hamiltonian may be represented as a sum of the
individual interaction Hamiltonians. In the case of quadrupolar
nuclei (and for QUEST), most often only the Zeeman, quadrupolar,
and chemical shift interactions are important [18]. Hence, for a
diamagnetic sample in the solid state, the relevant total spin
Hamiltonian for a quadrupolar nucleus in a magnetic field can be
written as follows [14,16]:
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where n0 is the Larmor frequency and m is the magnetic quantum
number which can take values ranging from þ I to � I. CQ is the
quadrupolar coupling constant which is itself defined as eV33Q/h
where e is the fundamental charge, V33 is the EFG principal tensor
component of largest magnitude, and h is Planck’s constant.
In general, the principal components of the EFG tensor are ordered
as 9V339Z9V229Z9V119. The Vn (n¼0, 71, 72) terms are spherical
tensor components which can be calculated according to Man and
Vega [15,16].
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The angular dependence is held in the Vxx, Vxy type terms.
These are written as follows:
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In the previous expressions, y and f are the polar angles
describing the orientation of the EFG tensor with respect to the
magnetic field and Z is the quadrupolar asymmetry parameter
which is defined as (V11�V22)/V33 and can take values ranging
from 0 to 1, where 0 corresponds to an axially symmetric tensor.
An alternative parameter is the quadrupolar frequency (nQ) which
is defined as follows:
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It can be useful to compare nQ to n0 in order to judge whether a
particular spin system should be described in the context of NMR
or NQR.

Note that in the Hamiltonian, the secular approximation was
used to define the chemical shift interaction; in other words, the
antisymmetric parts [27,28] of the chemical shift were ignored.
The angular dependence of the chemical shift interaction is

contained in the value of dZZ, which is calculated as follows:

dZZ ¼ d11 sin2 @ cos2 jþd22 sin2 @ sin2 jþd33 cos2 @, ð5Þ

where the polar angles W and j are used to represent the
orientation of the chemical shift (CS) tensor principal axis system
with respect to the applied magnetic field and dNN (N¼1, 2, or 3)
are the chemical shift tensor principal components. These tensor
components are ordered as d11Zd22Zd33. Note that the polar
angles for the CS tensor can be different from those used to orient
the EFG tensor although they are tied to one another with the use
of Euler angles (see QUEST help file). To define the CS tensor in
QUEST, three additional parameters are used: the isotropic
chemical shift value (diso), the span (O), and the skew (k). These
are defined as follows [29]:

diso ¼
d11þd22þd33

3
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O
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From the quadrupolar Hamiltonian (i.e., the second term in
(1)) it can be seen that only its first term commutes with the
Zeeman Hamiltonian. All other terms contain the raising and
lowering spin operators which have the effect of increasing or
decreasing the magnetic quantum number by one unit. This
potential problem is more easily understood when we consider
the individual elements of the Zeeman-quadrupolar Hamiltonian
matrix, which are calculated as follows:
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If the pure Zeeman states were in fact true eigenfunctions of
this operator, then all off-diagonal terms would be zero. Although
other methods have been proposed [30–38], this problem can
also be solved by simply diagonalizing the Hamiltonian matrix.
This approach for calculating exactly the eigenvectors of the
Hamiltonian for quadrupolar nuclei has found widespread use for
the calculation of splittings caused by residual dipolar coupling
[39,40]. Rotation of the total spin Hamiltonian matrix is performed
in order to re-express it in a frame in which it is diagonal. The true
eigenvalues (energy levels) can then be extracted directly and can
be used to calculate the resonant transition frequencies. In this
new frame, the correct eigenfunctions for the different states have
been expanded as a superposition of all Zeeman states [39,40]:

nj i ¼
XI

m ¼ �I

amn mj i, ð13Þ

where amn is the mth component of the nth eigenvector. These are
generated as a result of the diagonalization, and correspond to the
columns of the rotation matrix (see QUEST help file).

These eigenfunctions can then be used to calculate all other
NMR properties such as dipolar coupling [26]. In QUEST, these are
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