
Determination of NMR cogwheel phase cycle with XML

Yannick Millot a,b,�, Redouane Hajjar a,b, Pascal P. Man a,b

a UPMC Univ Paris 06, UMR 7142, Laboratoire SIEN, 4 place Jussieu, F-75005 Paris, France
b CNRS, UMR 7142, Laboratoire SIEN, 4 place Jussieu, F-75005 Paris, France

a r t i c l e i n f o

Article history:

Received 29 October 2008

Received in revised form

13 January 2009
Available online 4 February 2009

Keywords:

NMR

Cogwheel phase cycling

Coherence transfer pathways

XML

XSLT

SIMPSON

MQMAS

z-filter

a b s t r a c t

The selection of correct coherence transfer pathways is an essential component of an NMR pulse

sequence. This article describes a new method based on the use of web tools (eXtensible Markup

Language and eXtensible Stylesheet Language Transformation) to generate a cogwheel phase cycle for

selecting coherence transfer pathways. We illustrate this method with the three-pulse phase-

modulated shifted-echo or split-t1 MQMAS sequences for triple-quantum spin-3/2 systems. After

generalization to the different half-integer quadrupole spins, we use the SIMPSON program to confirm

our results. Finally, we apply our method to the case of the z-filter 3QMAS sequence for I ¼ 3/2 systems.

& 2009 Elsevier Inc. All rights reserved.

1. Introduction

The choice of coherence transfer pathways is vital in solid- and
liquid-state NMR pulse sequences. To achieve this, two main
methods are commonly used: pulsed field gradient [1–3] and
phase cycling. They allow not only the selection of the desired
signal but also the suppression of uninteresting NMR signals or
artefacts arising from instrumental imperfections. The first
method for phase cycling construction is the classical ‘‘nested’’
phase cycling proposed by Bodenhausen et al. [4] and by Bain [5],
where the phase of each RF block is cycled separately while the
phases of the other RF blocks are kept constant. To reduce the
experiment time, we often try to build a phase cycle of minimal
length. Some workers have investigated the possibility of
generating shorter phase cycles [6–8]. Recently Levitt et al.
proposed two new approaches: cogwheel phase cycling [9] and
multiplex phase cycling [10]. In multiplex phase cycling, data are
recorded after some phase increment instead of at the end of a
complete cycle. Malicki et al. [11] applied this phase cycling to the
MQMAS method. Moreover, we have proposed a procedure to
optimize the pulse durations for recording multiplex 73Q and
75Q MAS experiments within the same data acquisition [12]. This
method is based on the simulation of the echo and the anti-echo
amplitudes of a spin I with increasing pulse durations in a powder

rotating at the magic angle, using Mathematica [13] and SIMPSON
[14]. In cogwheel phase cycling, the phases of all the RF blocks are
incremented simultaneously. In many cases, use of the cogwheel
concept reduces the minimum number of steps in the phase cycle
[9,15–18]. It is also used with success in multidimensional liquid-
state NMR experiments [19,20]. However, the determination of
various parameters involved in cogwheel phase cycling requires a
numerical search. In the literature, there are few methods for
making this search. Jerschow and Kumar propose a C++ program
[15,21].

In this paper, we present a procedure using two web tools [22]:
XML (eXtensible Markup Language [23–25]) for modelling pulse
sequences and cogwheel phase cycling and XSLT (eXtensible
Stylesheet Language Transformation [26,27]) for the numerical
search of cogwheel parameters. After a short description of
cogwheel phase cycling, we introduce the two web tools: XML
and XSLT. We illustrate our method by applying it to phase-
modulated shifted-echo [28] or split-t1 [29] +3QMAS sequences
for spin-3/2 systems. The phases cycling of the three pulses and of
the receiver are identical for the two sequences; only the division
of spin evolution times is different. They allow recording the
whole echo or anti-echo during the acquisition time, but in the
case of split-t1, the echo appears at a fixed position in the t2 time
domain. We consider the case where the pulses have the same
amplitude but the result remains valid for a third pulse of weak
amplitude. We show that our results are identical with those
found by Levitt et al. [9], Goldbourt and Madhu [30] and Jerschow
and Kumar [15] via transformations. We discuss its generalization
to four half-integer quadrupole spins like Goldbourt and Madhu
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[30]. We suggest using the SIMPSON program to confirm our
results. Details of this procedure are available in our website:
www.pascal-man.com. We use our method for determining the
cogwheel phase cycle associated with the selection of the echo
and anti-echo transfer pathways of a spin I ¼ 3/2 systems with
z-filter sequence [31].

2. Cogwheel phase cycling

This presentation is adapted from that of Levitt et al. [9].
Consider a pulse sequence composed of M independent blocks Bi

(1pipM). The signal S(p) from a general coherence transfer
pathway p ¼ f0Q ! pB1B2

Q ! � � � ! pBM�1BM
Q !�1Qg after N

steps of phase cycling is given by [32]

SðpÞ ¼
1

N

XN�1

m¼0

expf�ifðmÞðpÞg, (1)

where fðmÞ is the pathway phase for transient m. In cogwheel
phase cycling, the phases of the pulse sequence blocks and the
receiver are incremented simultaneously as

fðmÞB1
¼

2pWB1

N
m; fðmÞB2

¼
2pWB2

N
m; . . . ,

fðmÞBM
¼

2pWBM

N
m; fðmÞrec ¼

2pWrec

N
m, (2)

where WBi
is an integer, called the winding number of block Bi and

Wrec the receiver winding number. The pathway phase can be
expressed by [9]

fðmÞðpÞ ¼
2pm

N
½ðWB1

�WB2
ÞpB1B2

þ ðWB2
�WB3

ÞpB2B3
þ � � �

þ ðWBM�1
�WBM

ÞpBM�1BM
�WBM

� þ fðmÞrec . (3)

Generally, the set of N phase cycling experiments allows us to
add the signals from desired pathways constructively and those
from undesired pathways destructively [32]. In this case, the
pathway phase must satisfy the condition:

fðmÞðpÞ
¼ 2pR if p 2 fp0; p1; . . .g

a2pR otherwise;

(
(4)

where R is an integer and p0; p1; . . . are the desired coherence
transfer pathways. From this condition, the receiver phase for
transient m is adjusted to select a desired pathway. For example,
for p0 it is defined by

fðmÞðp0Þ ¼ 0. (5)

In this case

fðmÞrec ¼ �
2pm

N
½ðWB1

�WB2
Þp0

B1B2
þ ðWB2

�WB3
Þp0

B2B3
þ � � �

þ ðWBM�1
�WBM

Þp0
BM�1BM

�WBM
�, (6)

and Eq. (3) can be expressed as

fðmÞðpÞ ¼
2pm

N
½ðWB1

�WB2
ÞðpB1B2

� p0
B1B2
Þ

þ ðWB2
�WB3

ÞðpB2B3
� p0

B2B3
Þ þ � � �

þ ðWBM�1
�WBM

ÞðpBM�1BM
� p0

BM�1BM
Þ�. (7)

The signal S(p) is not zero if the condition in Eq. (4) is fulfilled, that is

ðWB2
�WB1

ÞðpB1B2
� p0

B1B2
Þ þ � � � þ ðWBM

�WBM�1
ÞðpBM�1BM

� p0
BM�1BM

Þ

¼ N � integer. (8)

It is equivalent to

XM�1

i¼1

ðWBiþ1
�WBi

ÞðpBiBiþ1
� p0

BiBiþ1
Þmod N ¼ 0, (9)

where mod is the modulus operator. There are as many conditions
in Eq. (9) as the number of desired coherence transfer pathways. It
is very important to note that these conditions are satisfied not
only by the desired coherence transfer pathways but also by other
unwanted pathways.

The main difficulty about cogwheel phase cycling is the
numerical search for the number of steps N and the winding
numbers. Fortunately, we can use rules established by Hughes
et al. [16] to estimate the minimum N value. To determine
the winding numbers of a specific coherence transfer pathway,
it is necessary to consider all the pathways for a spin I. Indeed,
the number of possible coherence orders between two neighbour-
ing RF blocks is (4I+1), and for each of them the winding
number can take any value between 1 and N�1. We obtain a tree
structure which quickly becomes complex. We found this
tree diagram in structured documents for data exchange on
the web. We decided to use the web tools: XML and XSLT,
which are adapted to this kind of problem and give the results
simply. They have the advantage of being free of copyright,
independent of the platform and their supports are significant and
increasing.

After the determination of the winding numbers for the pulses
with Eq. (9), the general equation of the receiver phase for
transient m [32]:

fðmÞrec ¼ �
XM
i¼1

DpBi
fðmÞBi

(10)

is used for determining the receiver winding number Wrec

(Eq. (2)).
There are as many relations in Eq. (10) as the number of

desired coherence transfer pathways. Moreover, for some spectro-
meters, the receiver phase increment must be a multiple of p/2
and all phases involved in the pulse sequence must be positive.
Fortunately, it is possible to manipulate the winding numbers and
the phases. For this, we introduce three rules.

2.1. First rule: one desired pathway is necessary for the

determination of receiver winding number

If several desired transfer pathways are involved in the
sequence, it is sufficient to derive the receiver winding number
with one desired transfer pathway. For example, we consider that
two desired pathways p0 and p1 are selected. According to Eq. (6)
the difference between receiver phases for the two pathways,
f0;ðmÞ

rec and f1;ðmÞ
rec are

f0;ðmÞ
rec �f1;ðmÞ

rec ¼ �
2pm

N

XM�1

i¼1

ðWBiþ1
�WBi

Þðp1
BiBiþ1
� p0

BiBiþ1
Þ. (11)

Since Eq. (9) is valid for any general coherence transfer pathway p,
it is also valid for the desired pathway p1, that is

XM�1

i¼1

ðWBiþ1
�WBi

Þðp1
BiBiþ1
� p0

BiBiþ1
Þmod N ¼ 0. (12)

From Eq. (12) we deduce that the difference f0;ðmÞ
rec � f1;ðmÞ

rec in Eq.
(11) is a multiple of 2p. In other words, f0;ðmÞ

rec ¼ f1;ðmÞ
rec in the [0, 2p[

range and the receiver winding number Wrec can be deduced from
any desired pathway.

2.2. Second rule: add the same integer to all winding numbers does

not change the cogwheel phase cycling

Ivchenko et al. [17] propose that the winding number
of the receiver can be subtracted from all the winding
numbers in the case of a perfect quadrature receiver. Indeed, the
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