Accepted Manuscript Dependence of electrostatic potential distribution of Al_2O_3/Ge structure on Al_2O_3 thickness Xiaolei Wang, Jinjuan Xiang, Wenwu Wang, Chao Zhao, Jing Zhang PII: S0039-6028(16)30072-3 DOI: doi: 10.1016/j.susc.2016.04.001 Reference: SUSC 20863 To appear in: Surface Science Received date: 4 February 2016 Revised date: 3 April 2016 Accepted date: 4 April 2016 Please cite this article as: Xiaolei Wang, Jinjuan Xiang, Wenwu Wang, Chao Zhao, Jing Zhang, Dependence of electrostatic potential distribution of Al_2O_3 /Ge structure on Al_2O_3 thickness, *Surface Science* (2016), doi: 10.1016/j.susc.2016.04.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ### **ACCEPTED MANUSCRIPT** # Dependence of electrostatic potential distribution bandalignment of Al₂O₃/Ge structure on Al₂O₃ thickness Xiaolei Wang, ¹ Jinjuan Xiang, ¹ Wenwu Wang, ^{1,a)} Chao Zhao, ¹ and Jing Zhang ^{2,b)} ¹Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China ²Microelectronics Department, North China University of Technology, Beijing 100041, China **Abstract:** Electrostatic potential distribution Band alignment of Al_2O_3/Ge structure is investigated vs. Al_2O_3 thickness by X-ray photoelectron spectroscopy (XPS). The electrostatic potential distribution band alignment is found to be Al_2O_3 thickness dependent and the valence band offset increases with thicker Al_2O_3 . This interesting phenomenon is attributed to the appearance of gap states on Al_2O_3 surface (GS_{Al2O3}) and its higher charge neutrality level (CNL) compared with the CNL of gap states at Al_2O_3/Ge interface $(GS_{Al2O3/Ge})$, leading to electron transfer from $GS_{Al2O3/Ge}$ to $GS_{Al2O3/Ge}$. In the case of thicker Al_2O_3 , fewer electrons transfer from GS_{Al2O3} to $GS_{Al2O3/Ge}$, resulting in a larger potential drop across Al_2O_3 and XPS results. **Key words:** band alignment; Electrostatic potential distribution; X-ray photoelectron spectroscopy; Germanium; high-k dielectric; charge neutrality level. #### Download English Version: ## https://daneshyari.com/en/article/5421217 Download Persian Version: https://daneshyari.com/article/5421217 <u>Daneshyari.com</u>