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Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing frac-
tion estimated using random sequential adsorption simulations. The goal of particular interest is providing hints
on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random
packing of disks on continuous and flat surfaces of different sizes.
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1. Introduction

Unflagging interest in properties of randompackings of different ob-
jects is a result of its application in description of soft and living matter
[1,2]. One of the protocols that allows to create a specific type of random
packing is random sequential adsorption (RSA). Such packingswas used
for the first time by Flory to study the attachment of blocking pendant
groups on a linear polymer [3]. In 1960 Rényi studied the parking pat-
tern of cars along an unmarked curb [4], which is another example of
one-dimensional RSA. Its present popularity owes to Feder who has
shown that it can be very useful for modelling monolayers obtained
during irreversible adsorption processes [5–8]. Since then RSA algo-
rithm and properties of random packings became an active area of re-
search e.g. [9–11]. More recently, random packings generated by RSA
have been in the range of interest of a number of other scientific fields,
e.g., mathematics [12], telecommunication [13] and information theory
[14].

The RSA algorithm is based on the following steps:

− a virtual particle's position (and orientation for anisotropic shapes) on
a surface is drawn according to the specific probability distribution
that reflects the structure of the surface. For example, the uniform
probability distribution corresponds to a homogeneous surface.

− the virtual particle is tested whether it intersects with any of previ-
ously added particles. If not it is added to the packing. Otherwise it
is removed and abandoned.

The steps should repeat until the packing is saturated, i.e., there is no
room for any additional particle on the surface. Themain problem of
RSA is its efficiency at late stages of simulation, where a probability
of adding subsequent particle is very small. Thus it requires then
very large number of iterations and themethod becomes ineffective.
Therefore, a simulation is usually stopped after a large but finite
number of iterations n and the number of particles in a saturated
packing N is extrapolated according to the Feder's law [15–17].

N ¼ N tð Þ þ At−
1
d: ð1Þ

Here, N(t) is a number of particles in a packing after dimensionless
time t=nSp/S, whichmeasures number of iterations and is used to com-
pare results of simulations using different sizes of a packing S and differ-
ent sizes of a particle Sp. Parameter A is a positive constant and d is equal
to 2 for disks and 3 for anisotropic shapes [18,19]. The relation is valid
for large t. Such extrapolation is one of the sources of numerical error
in designating N. Another one is a finite surface size S. Recently, Zhang
et al. have proposed optimized version of RSA, in which sampling
omits areas where there is not possible to place another particle [20].
This significantly speeds up simulations especially at the late stage of
packing creation where most of the places are already occupied. This
makes possible generating saturated packings of disks after a relatively
short simulation time. In practice, however, this solution cannot be used
for very large packings (Nmax$_amp_$gt;108) due to its memory re-
quirements. Here, the memory is needed to store an information
about places where sampling may result in adding a disk to a packing.
Moreover, no extension of this method have been developed for aniso-
tropic shapes, so far, thus, in general, an error resulting from
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extrapolation cannot be omitted. In the case of RSA, controlling errors is
crucialwhen saturated packing properties are to bemeasuredwith high
precision, for example to compare packing fraction for different but sim-
ilar shapes [21].

The main aim of this study is to carefully analyse the influence of fi-
nite time of simulations and of finite size of a packing on the relative
error of an average saturated packing fraction obtained in a numerical
experiment based on RSA. Additionally, other properties of random se-
quential adsorption are examined, such as distribution of the number of
particles in a packing as well as the time needed to saturate a packing.
To achieve this, we studied saturated random packings and kinetics
properties of RSA of disks for various surface sizes.

2. Simulation details

Surface area S varied between 104–4·107, with a single disk area of
Sp=1. Saturated packings were created on square surfaces of periodic
boundary conditions, using method described in details in [20]. For
each studied surface size, 100 independent packings were analysed
with an exception of S=106, for which 104 packings were studied. For
each disk in a packing, besides of its position, its sequential number
and dimensionless time at the moment of placing it in the packing
were recorded. Simulations were performed on a desktop PC with i5-
4670K processor and 24 GB of RAM. The memory requirements depend
mainly on accuracy of representation of a space where the next particle
can be placed.More accurate approximation requiresmorememory but
also may speed up simulation. Therefore, to perform simulations effec-
tively a balance between memory consumption and computing time is
needed. For example, for S=106 and using 1.7 GB of RAM or more, it
was possible to create saturated packing in 75 s, butwhenmemory con-
sumptionwas limited to 1.4 GB of RAMonly, the simulation time grows
up to 730 s.

3. Results

The example of saturated packing of disks is shown in Fig. 1.
An important property of a random packing is its average packing

fraction:

θ ¼ N
Sp
S

� �
; ð2Þ

where 〈·〉denotes averaging over a set of independent packings. The av-
erage is well defined and the packing fraction seems to be normally dis-
tributed (see Fig. 2). Although this observation seems to be trivial, note
that the time needed to get a saturated packing behaves in a totally dif-
ferent way (see Fig. 3). Its distribution remains a power law, clipped for
small values of t.

3.1. Dependence of numerical error on packing size

As this study focuses mainly on errors management, it is worth to
analyse Fig. 4, whichpresents numerical results for an average saturated
packing fraction for different packing sizes. This plot suggests that for
quite large surfaces of periodic boundary conditions total error is prac-
tically equal to statistical error. Note, for example, the agreement be-
tween an average over 104 independent saturated packings for S=106

and average over 100 packings for S=4·107. It is expected, as the in-
tensity offinite size effects for periodic boundary conditions are strongly
related to the correlation length over the linear system size. For one di-
mensional packing generated by RSA algorithm it was proved that den-
sity autocorrelations are super exponentially damped at long distances
[22], and numerical experiments show that this damping is stronger
when packing dimension increases [20,23]. Thus, for two dimensional
case density autocorrelation function is practically equal 0 at a distance
10 times larger than the diameter of a disk.

Although some values in Fig. 4 are outside error bars limit, this also
agrees with statistics. For a normally distributed variable, the probability

Fig. 1. Fragment of a saturated packing of disks obtained from RSA simulations.

Fig. 2. Histogram of saturated packing fractions obtained from 104 independent packing
for S=106. Red line corresponds to normal distribution of the average 0.547070 and
standard deviation 1.76752×10−4. Inset shows the same plot but in log-normal scale.
Histogram was normalized to represent probability distribution. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Histogram of dimensionless time after which packing became saturated. Inset
shows the histogram in a log–log scale. Note that in this case bins have different widths.
Both histograms were normalized to represent a probability distribution.
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