Contents lists available at ScienceDirect #### Surface Science journal homepage: www.elsevier.com/locate/susc ### C_{70} self-assembly on In- and Tl-adsorbed Si(111) $\sqrt{3}$ × $\sqrt{3}$ -Au surfaces - D.A. Olyanich^{a,b}, V.V. Mararov^{a,b}, T.V. Utas^{a,b}, A.V. Zotov^{a,b,c,*}, A.A. Saranin^{a,b} - ^a Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok, Russia - ^b School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok, Russia - ^c Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok, Russia #### ARTICLE INFO # Keywords: Molecular–solid interactions Silicon Fullerene Self–assembly Adsorption Scanning tunneling microscopy #### ABSTRACT Behavior of C_{70} fullerenes adsorbed onto the In- and Tl-modified Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surfaces at room temperature (RT) and 112 K has been studied using scanning tunneling microscopy observations and compared with the known results for the C_{60} s on the same surfaces. During island growth at 112 K, both C_{70} and C_{60} are characterized by the same critical island size i=1. The difference is in an island shape as C_{70} s tend to form chain-like islands built of double or triple molecular rows along the [110] Si(111) substrate directions. At RT, C_{70} s have a lower mobility as compared to C_{60} s. In contrast to the C_{60} magic islands, the C_{70} islands do not demonstrate any strong preference for specific shapes or sizes. Extended C_{70} arrays exhibit a stripe-like 3×1 reconstruction where a single row of bright fullerenes mediated by a double row of dim fullerenes. The reconstruction is due to the different orientations of C_{70} s within the layer which does not relate to the structure of the underlying Au/Si(111) substrate. This is in contrast to the hexagonal reconstructions of C_{60} s where the bright fullerenes occupy the specific adsorption site atop Au trimers. The difference in the behavior of C_{70} and C_{60} is plausibly affected by the non-spherical shape of C_{70} molecule and a greater intermolecular C_{70} - C_{70} interaction. #### 1. Introduction The adsorption of fullerenes onto metal and semiconductor surfaces has attracted considerable interest due to a variety of the fascinating phenomena underlying fullerene self-assembly. Among such phenomena one can mention developing modulations in the close-packed fullerene monolayers which shows up as appearance of molecules having two different contrast in scanning tunneling microscopy (STM) images: "bright" and "dim". The bright-dim contrast was observed in C₆₀ monolayers on many noble-metal surfaces, including Ag(111) [1,2], Ag(100) [3-5], Au(111) [6-9], Cu(111) [10], Cu(100) [11]. The apparent height difference between bright and dim molecules can amount to $\sim 1-2$ Å. However, the origin of this contrast remains a debated subject as it can result from the electronic effects, the molecular orientations, or the geometric effects due to substrate reconstruction. As for the metal/silicon surface phases, i.e. surface reconstructions induced by adsorption of metal submonolayers onto Si crystalline substrates, the distinct dim-bright contrast was observed in the C₆₀ monolayers on the pristine Si(111) $\sqrt{3} \times \sqrt{3}$ -Ag surface [12,13] and Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surface modified by In [14,15] or Tl [16] adsorption. In particular, the dim fullerenes in the C₆₀ monolayers on $Si(111)\sqrt{3} \times \sqrt{3}$ -Ag constitute ~10% of all fullerenes and reside ~1.6 Å lower than other fullerenes. It was suggested that formation of the dim C_{60} is associated with a disintegration of Ag trimer of Si(111) $\sqrt{3}$ × $\sqrt{3}$ -Ag surface beneath a given fullerene [13]. In the C₆₀ monolayers on the In- or Tl-adsorbed Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surfaces, the bright fullerenes are arranged in the well-defined two-dimensional (2D) lattices [14,16]. Note that adsorption of ~0.1–0.2 ML of In or Tl onto Si(111) $\sqrt{3}$ × $\sqrt{3}$ -Au was used to remove domain walls, characteristic of the pristine surface [17], and to produce almost defect-free highly-ordered and homogeneous Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surfaces [18–20]. These surfaces preserve atomic arrangement of the pristine surface [21] but contains also a 2D gas of In or Tl adatoms. The bright C₆₀ on these surfaces were recognized to reside directly atop the Au trimers, the most energetically unfavorable adsorption sites [14,15]. This fact has a remarkable sequence for the C₆₀ island growth leading to size selection and magic C_{60} island formation. For example, more than $80\ \%$ of C_{60} islands grown on In-adsorbed Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surface can have identical shape and size, namely each contains 37 fullerenes arranged in a regular hexagon [15]. Bearing in mind this advantageous property of the particular fullerene-substrate pair, it seemed of interest to explore how changing of the spherical fullerenes C₆₀ for the elongated fullerenes C₇₀ would affect their growth mode. It is worth noting, however, that in many adsorption phenomena, C₇₀ differ from C₆₀ not only by the size and shape but rather by the different charge transfer [22], kinetic characteristics [23] and intermolecular interaction [24]. ^{*} Corresponding author at: Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok, Russia. E-mail address: zotov@iacp.dvo.ru (A.V. Zotov). D.A. Olyanich et al. Surface Science 656 (2017) 1–6 **Fig. 1.** STM images illustrating early stage of C_{70} island growth on In-adsorbed $Si(111)\sqrt{3} \times \sqrt{3}$ -Au held at (a) RT and (b) 112 K. Scale: (a) $300 \times 165 \text{ nm}^2$, (b) $100 \times 55 \text{ nm}^2$. In the present paper, we report on the results of the STM study of C_{70} adsorption and self-assembly on In- and Tl-adsorbed $\mathrm{Si}(111)\sqrt{3}\times\sqrt{3}$ -Au surface which results are compared with those reported for C_{60} on the same surfaces. It has been found that non-spherical shape of C_{70} alters significantly the growth mode. Starting from the early stages, the islands tend to adopt elongated shapes. In the extended arrays, the molecules are arranged in the linear super-structure with alternating sequence of bright and dim C_{70} rows, namely one bright row is typically mediated by two dim rows. The super-structure does not demonstrate a clear resemblance with the structure Fig. 3. Selection of C₇₀ islands grown at (a) 112 K and (b) RT. of the underlying Au/Si(111) substrate and is plausibly a result of the interactions between molecule in various orientations. #### 2. Experiment Our experiments were performed with an Omicron VT-STM operating in an ultrahigh vacuum ($\sim 2.0 \times 10^{-10}$ Torr). Atomically-clean Si(111)7 \times 7 surfaces were prepared *in situ* by flashing to 1280° C after the samples were first outgassed at 600° C for several hours. Gold was deposited from an Au-wrapped tungsten filament, indium and thallium from the Ta crucibles and fullerenes, C₇₀ (BuckyUSA, purity 99.5%), from a resistively heated Ta boat. For STM observations, electrochemically etched tungsten tips cleaned by *in situ* heating were employed. To prepare the In- or Tl-modified Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surfaces, the Si(111) $\sqrt{3} \times \sqrt{3}$ -Au surface was first formed by Au deposition onto Si(111)7 \times 7 surface held at 600° C and then \sim 0.5 ML of In or Tl was 2.0 2.5 3.0 Fig. 2. (a) Experimental C_{70} island size distribution at 112 K. Inset shows a fragment of the surface with C_{70} island array under consideration. (b) Experimental scaled island size distribution (red circles) superposed on the simulated scaling functions f_i for critical island size i=1, 2, and 3 (red, blue and green lines, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) #### Download English Version: ## https://daneshyari.com/en/article/5421347 Download Persian Version: https://daneshyari.com/article/5421347 <u>Daneshyari.com</u>