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a b s t r a c t

In this paper a novel analytical approximation method for surface potential (cs) calculation in compact

MOSFET model is presented. It achieves excellent accuracy and good calculation speed over all regions

from accumulation to strong inversion. With this approximation method, a surface potential-based

compact model for short channel MOSFET is developed. Comparison with measured data is also

presented to validate the new model.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many different methods have been developed for MOSFET
compact modeling, result in models with various degrees of com-
plexity and accuracy. At present, surface potential-based models
have engaged more interest, and tend to be the mainstream of
MOSFET compact models.

However, there is a critical building block for developing
surface potential-based models: the surface potential cs has to
be evaluated from an implicit surface potential equation [1],
which may lead to complicated computation. The surface potential
calculation methods can be divided into two categories: numerical
iteration [2–5] and analytical approximation. The iteration
method is used in the latest MM11 [6] and HiSIM [7], and the
most accurate values of cs can be computed with them. However,
the iteration method requires a special care in programming and
coding, otherwise, it is likely to cause convergence issues or lower
the simulation efficiency.

Consequently, for cs calculation, a proper analytical approxima-
tion would be a better method. In literatures several analytical
approximation methods have been reported. The analytical approx-
imation model reported in Ref. [8] is used in previous levels of
MM11 [9,10]. But the accumulation region is not included in this
model, and the model’s absolute error of cs is about 2–3 mV, which
is not good enough for reproducing derivatives of current in the
moderate inversion region [11]. The analytical approximation

method used in PSP [12] has been reported in Refs. [11,13,14],
which achieves good accuracy in all operation regions [14].
However, the cs computation in PSP becomes very complicated.
In Ref. [15], the analytical approximation reported is also very
complicated. In the analytical surface potential model reported in
Ref. [16], only subthreshold region is considered.

In this paper, a novel analytical method for cs computation is
presented, which achieves both excellent accuracy and good
computation speed. In the calculation speed comparison, the
model shows a better performance than PSP. It also keeps validity
over all regions from accumulation to strong inversion. Though
different equations are used for different operation regions, it still
keeps the continuity of cs and it’s derivatives even on the region
boundaries.

With the new surface potential model, a charge sheet model is
presented. A new linearized bulk charge equation is developed,
which keeps the model symmetry with respect to source and drain.
For short channel devices, velocity saturation model is derived. New
subthreshold models are also developed, which provide model
parameter that affect operation regions separately, and lead to
easier extraction work and better accuracy. At last, comparison of
the model result with the measured result is presented, in which the
new model shows an accurate description for the actual short
channel MOSFET devices.

2. Surface potential model

Solved from one dimensional Poisson equation, the original
surface potential equation was first developed in Ref. [17], then
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the equation was discussed again and modified by Refs. [18,19].
According to Refs. [18,19], a physically based well-conditioned
version of the surface potential equation can be expressed as
follows:

VGB ¼ VFBþcs7g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð�2fF�fnÞ=ft ðfte

cs=ft�cs�ftÞþfte
�cs=ft þcs�ft

q
ð1Þ

where VGB is the gate-to-bulk voltage, VFB is the flat band voltage,

ft ¼ kT=q is the thermal potential, fF is the Fermi potential,

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qEsNsub

p
=Cox is the body factor, Nsub is the substrate con-

centration, Cox is the oxide capacitance per unit channel area, q is
the magnitude of electronic charge, Es is the permittivity of

silicon, the þ sign before g is used with cs40 and � sign is

used with cso0, the bulk-referenced quasi-Fermi potential fn is
equal to VSB and VDB at the source and drain end, respectively.
Eq. (1) is valid for all values of gate-bulk voltage VGB and gives an
accurate description in all operation regions (accumulation,
depletion and inversion). With some notations, it can be reformed
as follows:

z¼ x7a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex�A�xe�A�e�Aþe�xþx�1

p
ð2Þ

where x¼cs=ft , z¼ ðVGB�VFBÞ=ft , a¼ g=
ffiffiffiffiffiffi
ft

p
, A¼ ð2fFþfnÞ=ft .

The analytical approximation of surface potential in our model
is derived from Eq. (2).

2.1. The cs approximation equations

To simplify the expression of our analytical approximation,
following notations are used for cs calculation:

vt¼ Aþa
ffiffiffi
A
p

ð3Þ

td¼

ffiffiffi
A
p

ffiffiffi
A
p
þa

ð4Þ

tds¼�
aðA�2Þ

2ð
ffiffiffi
A
p
þaÞ3

ð5Þ

fd¼

ffiffiffi
2
p

ð
ffiffiffi
2
p
þaÞ

ð6Þ

fds¼
2a

3ð
ffiffiffi
2
p
þaÞ3

ð7Þ

Thus the computation of cs is divided into three pieces
according to the value of z.

2.1.1. For zZvt

When xZA, zZvt. By assuming Ab1, Eq. (2) can be simplified
as:

z¼ xþa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex�Aþx�1

p
ð8Þ

As described in Appendix A, the approximation calculation of
cs can be derived as follow:

x0 ¼ ln½1þtdðz�vtÞþ1
2ðtd

2
þtdsÞðz�vtÞ2�þA ð9Þ

x1 ¼ ln
x2

0

a2
� 1þ

2z

a2

� �
x0þ

z2

a2
þ1

� �
þA ð10Þ

where x0 and x1 are both approximation values of x. For value of z

near vt, x0 in Eq. (9) have better accuracy than x1; for zbvt, the
accuracy of x1 in Eq. (10) is better. Combine x0 and x1 yields

x2 ¼ x1�ðx1�x0Þe
�0:1�ðz�vtÞ ð11Þ

As an approximation of x in Eq. (2), the accuracy of x2 in
Eq. (11) is good enough for MOSFET compact modeling in a

regular parameter range (tox42 nm, Nsub42� 1017 cm�3). In
order to achieve adequate accuracy for wider parameter range,
further computations can be executed as:

z2 ¼ x2þa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex2�Aþx2�1

p
ð12Þ

cs ¼ft x2þ
ðz�z2Þ

z02
1�
ðz�z2Þz

00
2

2z022

 !" #
ð13Þ

where z02 and z002 are the first and second derivatives of z2 in
Eq. (12). The calculation method in Eq. (13) is similar with the
second-order Newton–Raphson iteration method in Ref. [3], but
in our model, only one time computation is needed for Eq. (13).

2.1.2. For zr0
When xr0, zr0. By assuming Ab1, Eq. (2) can be simplified

as:

z¼ x�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�xþx�1

p
ð14Þ

With the similar method used in the derivation of
Eqs. (9)–(13), the following equations can be derived as

x0 ¼�ln½1�fd � zþ1
2ðfd

2
þ fdsÞ � z2� ð15Þ

x1 ¼�ln
x2

0

a2
� 1þ

2z

a2

� �
x0þ

z2

a2
þ1

� �
ð16Þ

x2 ¼ x1�ðx1�x0Þe
0:1�z ð17Þ

z2 ¼ x2�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�x2þx2�1

p
ð18Þ

cs ¼ft x2þ
ðz�z2Þ

z02
1�
ðz�z2Þz

00
2

2z022

 !" #
ð19Þ

where z02 and z002 are the first and second derivatives of z2 in
Eq. (18).

2.1.3. For 0ozovt

When 0oxoA, 0ozovt. By assuming Ab1, Eq. (2) can be
simplified as:

z¼ xþa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðx,AÞ � ex�Aþ Iðx,AÞ � e�xþx�1

q
ð20Þ

where functions H and I are added to keep continuity with
Eqs. (8) and (14) on the region boundaries. They are introduced as:

Hða,bÞ ¼ 1�
1

2
þ

1

2
cos

p � a
b

� �4

ð21Þ

Iða,bÞ ¼ 1�
1

2
�

1

2
cos

p � a
b

� �4

ð22Þ

As described in Appendix B, the approximation method of cs

calculation can be derived as follow:

FðzÞ ¼ 1�Hðz,vtÞ � etdðz�vtÞþ ð1=2Þtdsðz�vtÞ2�Iðz,vtÞ � e�fd�z�ð1=2Þfds�z2

ð23Þ

x1 ¼ zþ
a2

2
�

a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4zþa2�4FðzÞ

q
ð24Þ

Gðx1Þ ¼ 1�Hðx1,AÞ � ex1�A�Iðx1,AÞ � e�x1 ð25Þ

cs ¼ft zþ
a2

2
�

a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4zþa2�4Gðx1Þ

q� �
ð26Þ

Thus, according to the value of z, we get the value of cs with
Eqs. (13) and (19) or Eq. (26).
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