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The evolution of an aggregate of particles embedded in a fluid phase, no matter whether a liquid, a vapor, or a
mixture of both, is determined by the dependence of the equilibrium interface area on porosity volume fraction.
In system with open porosity, this equilibrium can be analyzed using a model representing the particles as a
collection of cones of revolution, the number of which is the average particle coordination number. The accuracy
of themodel has been assessed using in situX-raymicrotomography. Themodelmakes possible the computation of
the driving force for sintering, commonly called sintering stress. It allows the mapping of the domains of relative
density, coordination number, and dihedral angle that bring about aggregate densification or expansion. The contri-
butionof liquid/vapor interfaces is enlightened, aswell as the dependence of the equilibriumfluid phase distribution
on particle size. Applied to foams and emulsions, the model provides insight into the relationship between osmotic
pressure and coordination. Interface-governed transport mechanisms are considered dominant in the macroscopic
viscosity. Both sintering stress and viscosity parameters strongly depend on particle size. The capacity of modeling
the simultaneous particle growth is thus essential. The analysis highlights the microstructural parameters and
material properties needed for kinetics simulation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Industrial heterogeneous catalysts consist of finely divided solid
particles forming randomly packed aggregates with open, percolating
porosity in which the fluid carrying reactants and products travels
(Fig. 1) [1,2]. The “fluid” can be a vapor phase, a liquid phase, or two
coexisting phases: a vapor with a liquid, or two immiscible liquids. If
two fluid phases are involved, they may either share the porosity
volume or, as represented in Fig. 1, be partitioned between the inner
porosity and the external environment of the aggregate. In the latter
case, their interface consists ofmenisci at the outlet of the pores. Capillary
phenomena play an essential role in trickle-bed reactors and othermulti-
phase reactors [3–5]. The evolution of the shape, size, and packing of the
particles determines both the surface area developed by active catalytic
species and the volume fraction and topology of the porosity, which
affects the mechanics of fluid flow through the catalyst bed. The control
of the kinetics of catalyst sintering becomes increasingly crucial today as
catalyst microstructure evolves to the nanoscale [6]. The evolution of
the system is governed by interface tensions and by the physical mecha-
nisms of diffusion across the fluid, across the bulk of the particles, and
along the various interfaces. These phenomena have been early investi-
gated by G.A. Somorjai (e.g., [7,8]).

The purpose of the paper is to present an overview of a modeling
approach developed in recent years for apprehending fluid distribution,
coarsening kinetics, and densification kinetics in dispersed media.
Although the approach focused primarily on materials processing by
sintering, the paper aims at showing the insight offered by the approach
into phenomena belonging to the realms of catalysts, emulsions, and
foams.

Let us consider energetically isotropic systems consisting of solid
particles and two fluids: a vapor phase and a liquid phase. Capillary
equilibrium is then governed by four interface tensions: solid/solid,
γss; solid/vapor,γsv; solid liquid,γsl; and liquid/vaporγlv. These tensions
define the equilibrium wetting angle θ = arccos [(γsv − γsl) / γlv] [9]
and the equilibrium dihedral angles ψsv = 2arccos (γss/2γsv) and
ψsl = 2arccos (γss/2γsl). In the following, we use the subscript “fl” for
designating indifferently liquid or vapor. When γsfl ≤ γss / 2, ψsfl = 0
and one takes γss = 2γfl because a thin interlayer of fluid is assumed
to be sandwiched at the contact interface between particles. The evolu-
tion of the system is driven by the decrease in interfacial energy

Einterface ¼ γssAss þ γsvAsv þ γslAsl þ γlvAlv ð1Þ

where Ass, Asv, Asl, and Alv are interface areas. Foams and emulsions are
other types of dispersed media, which may be represented by Fig. 1
on condition that so-called “particles” are vapor bubbles in foams and
liquid droplets in emulsions. Their capillary equilibrium obeys the
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same principles as for solid aggregates [10]. Interfaces between bubbles
and droplets being fully wetted by the percolating liquid, dihedral angle
is zero in foams and emulsions.

In the following, the so-called “relative density,” denoted ρ, is the
total volume of solid particles, liquid droplets, or vapor bubbles divided
by the total volume of the aggregate. No contact exists between the
particles below a certain critical relative density, denoted ρ0, which
is close to 0.62 in monodispersed random aggregates [11,12]. In
isotropic systems at capillary equilibrium, particles are then perfect
spheres freely floating in the fluid phase. These spheres can grow
only by Oswald ripening via mass transport through the fluid
phase. When ρ increases above ρ0, interparticle contact areas
increase while porosity remains open, forming a fully interconnected
network of channels which percolates throughout the aggregate.
Interparticle mass transport mechanisms can then occur also via
the bulk of the particles and along their contact interfaces. The pore
channels network becomes unstable when ρ exceeds a second critical
value, denoted ρpc, at which porosity subdivides into closed pores
isolated from one another.

In this paper, the analysis of the thermodynamics and kinetics of
evolution of the aggregate is limited to the process starting at the initial
formation of contacts between the particles and finishing at the closure
of thepores: neither the evolutionof isolatedparticles byOswald ripening
nor the sintering process after pore closure are considered. The subject is
addressed in three steps. Section 2 analyses the equilibrium area of the
interfaces without paying attention to the kinetics. The basic principles
underlying the modeling of the equilibrium configuration of interfaces
are introduced while giving reference to literature for mathematical
details. We describe first aggregates in which porosity contains only one
fluid phase – either vapor or liquid – and subsequently aggregates con-
taining both a liquid and a vapor. We present two examples of validation
of computational results by comparison with direct characterization of
interfaces by microtomography. Section 3 focuses on the driving force
for the evolution of the system, commonly called “sintering stress,” in
the presence of one or two fluid phases. The influence of particle size on
the phenomenon of liquidmigration in a graded aggregate is enlightened.
A parallel is made with the concept of “osmotic pressure,” which is the
corresponding driving force in foams and emulsions. Finally, Section 4
deals with the modeling of sintering kinetics via the modeling of the
mass transport mechanisms that determine the macroscopic viscosity
opposing the sintering pressure. Only interface-governed transport
mechanisms are considered in some detail. The discussion highlights
the importance of faithful, validated values for the variousmicrostructural
parameters and material properties that enter into the computational
models.

2. Interface shape equilibrium

2.1. Modeling principles

The volume of a randomly packed aggregate of particles may be
subdivided into an ensemble of Voronoï cells built by tracing themedian
planes between the centers of gravity of the particles (Fig. 2a). We will
represent the average particle size by the radius Rp of a sphere with
volume equal to the average particle volume in the aggregate. The aver-
age particle coordination number, nc, can be defined as the average
number of faces of the cells. Accordingly, nc is non-integer and vary
depending on the random packing density. If we leave aside the effects
due to particle size distribution, we may analyze the system by consid-
ering only an “average Voronoï cell” of volume 4πRp3/(3ρ) containing a
particle with average size Rp and average coordination nc. The average
Voronoï cell is an assemblage of nc pyramids of which the apex is at
the center of gravity of the particle. As long as porosity forms a contin-
uous three-dimensional network of pore channels (Fig. 2a), the nc
pyramids may be approximated by nc identical cones of revolution
(Fig. 2b). The opening angle β at the apex of the cone is related to nc as

β ¼ arccos 1−
2
nc

� �
ð2Þ

and the heightH of the cone is a simple function of Rp, nc, and ρ [13]. The
interparticle interface is then a circle of radius Rcontact. For symmetry, the
particle/fluid interfacemeets the external surface of the cone at 90°. The
critical particle volume fraction at which particle contact reduces to a
point (Rcontact = 0) is

ρ0 ¼ nc−2ð Þ2
nc nc−1ð Þ : ð3Þ

Eq. (3) closely corresponds to the volume fraction in regular periodic
arrangements of spheres with nc = 4, 6, 8, or 12 [13].

In random aggregates, the increase of ρ induces simultaneously a
rearrangement of the grains, which causes a monotonic increase of nc,
from about 6 when particles enter in contact to about 14 at ρ = 1.
Several authors have developed computational models aiming at
capturing this increase of nc with ρ [14–16]. Nevertheless, the phenom-
enon, and in particular the role of dihedral angle, remains ill understood.
In the lack of a predictive law based on physical mechanisms, we must
rely on empirical laws such as the relationship proposed German [17]
on the basis of an extensive review of literature data:

nc ¼ 2 þ 11ρ2 ð4Þ

Glicksman [18,19] has shown that, for random polycrystals (i.e., ρ=
1), the mathematical condition for having grains with flat interfaces
(i.e., grains at equilibrium with respect to one another) is nc = 13.397.

If ψsfl ≤ 60°, triple line boundaries (along the edges of the cell of
Fig. 2a) remainwetted by the fluid phase, and Fig. 2a can then represent
the system up to the disappearance of porosity. If ψsfl N 60°, the pore
channel network becomes unstable when ρ exceeds ρpc, the value of
which can be predicted on the basis of the Plateau–Rayleigh instability
criterion [20,21]. At capillary equilibrium, closed pores assume the
shape of regular spherical tetrahedrons localized at the points ofmeeting
of four triple lines (i.e., at the vertices of the Voronoï cell) [22,23].

Let us assume that we start with an aggregate made by compaction
of a bed of solid particles. Unlessψsfl=0at equilibrium, the evolution to
equilibrium chemical bonding at the interface brings about, as a corollary,
the formation of the equilibrium dihedral angle ψsfl along the triple line.
As illustrated in Fig. 3a, this creates a “neck” at the contact between the
particles. The subsequent evolution of the solid skeleton is driven by the
overall decrease in interface energy. At given volume of the two phases,
minimum particle/fluid interface area is reached when the curvature of
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Fig. 1. Aggregate of particles with two fluid phases separated by menisci at the outlet of
the pores; definition of dihedral angle ψsfl = 2arccos (γss/2γsfl).
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