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We investigate the relationship between topological Mott insulators and spin glasses.
By first explaining the phase of spin glass on the basis of finite sized block spin concepts, we then introduce the
three-dimensional insulating phase of a topological insulator with a finite bulk bandgap as the pairing of block
spins comprised of many random spins with respective majority spin directions. However, the two-
dimensional edge state of the topological insulator may be thought of as the pairing of triplet spins with a zero
bandgap. Topological insulators can be transformed into ordinary insulators below a certain temperature. Electric
field-induced transitions between normal and topological insulators are possible as explained by means of
composite charges.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The common characteristics of topological insulators (TIs) [1] in-
clude two-dimensional (2D) conducting states on their edge or surface
and a three-dimensional (3D) insulating phase with a bulk bandgap [2].
The concept of a TI was first postulated for graphenes, in which a 3D in-
sulator [3] can be compatible with 2D conducting edge states as a result
of strong spin-orbit effects as described by Kane and Mele [4]. This
means that most powerful property of a TI is related to the band cross-
ing from numerical band calculations, leading to conducting surfaces.
The major recent theoretical approaches to TIs are based on topological
field theories [5] and mean field schemes [6]. Experimental observa-
tions of HgTe/CdTe quantum well structures [7] and Bi1-xSbx [8],
among others, show the 2Dquantum spin Hall effects and gapped states
in bulk. TopologicalMott insulators and topological Anderson insulators
categorised as TIs have been the subject of considerable interest for re-
search groups, and the problem of the coexistence of superconductors
or quantum Hall conductors in 2D and 3D insulators has also attracted
the attention of both theorists and experimentalists.

In this paper, we employ renormalisation group theory [9] and its
compatibility with finite-sized block spin concepts, in which each spin
block is of such a size as to yield a finite nonzero total spin, meaning
that we can assign the normal states of TIs as spin glasses.

2. Theory

We postulate spin glasses to be composed of spin clusters that may
be treated as block spins. [10] In the presence of an external magnetic

field H in the z-direction, the Hamiltonian for a spin glass comprised
of random block spins is given by [11]

H ¼
X
i¼1

gμB H
!� S!i

¼ gμBH
X
i¼1

Siz
ð1Þ

where g is the Lande’s factor for a block spin, μB is the Bohr magneton,

and S
!

i is the spin operator for a block spin.
The block spin magnetisation is then given by

bMzN ¼ −gμB

X
i

bSizN

¼ −NBgμBbSzN
ð2Þ

bMzN ¼ −NBgμB

XS
Sz¼−S

Sz exp −gμBHSz= kBTð Þ½ �
( ),

Z

Z ¼
XS

Sz¼−S

exp −gμBHSz= kBTð Þ½ �

S ¼ δ
1
2

� �
N

where NB is the number of block spins,N is the number of random spins
in a block spin, and δ ≈ 0 represents an infinitesimal deviation from a
zero average.
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The resultant magnetisation and the freezing temperature Tf are
then obtained from the mean field average for the annealed random
system as

bMzN ¼ NBgμBSBS gμBHS= kBTð Þ½ �

BS x½ � ¼ 2Sþ 1
2S

coth
2Sþ 1
2S

x
� �

−
1
2S

coth
1
2S

x
� �

BS x≈ 0ð Þ ≅ Sþ 1
3S

x

BS x N N1ð Þ≃1−1
S
e−

x
S

Sþ 1
3S

gμBHS= kBT f
� � ¼ 1−

1
S
e−

gμBHS= kBT fð Þ
S þ a0 ¼ 1

S
−

1
S
e−

gμBHS= kBT fð Þ
S

bMzN jT¼∞ ¼ 0

ð3Þ

where the Brillouin function is approximated in the two asymptotic
limits and a0 is a constant for compensation.

The real and imaginary parts of the susceptibility are then calculated
respectively as

χ0 ¼ ∂
∂H

bRe Mzð ÞN

χ00 ¼ ∂
∂H

bIm Mzð ÞN
χ ¼ χ0 þ iχ00

ImbMzN ¼ NBgμBS~BS gμBHS= kBTð Þ½ �
~BS x½ � ¼ 2Sþ 1

2S
tanh

2Sþ 1
2S

x
� �

−
1
2S

tanh
1
2S

x
� �

ð4Þ

where the imaginary part corresponds to f π
2−θ
� �

for the real part of f(θ)
with the phase angle variable θ chosen arbitrarily.

Following Curie-Weiss theory [11], the ferromagnetic transition
temperature is given by

T FM ¼ 2z
3kB

S Sþ 1ð Þ J ð5Þ

with the magnetic susceptibility given by

χH ¼ C
T−T FM

C ¼ NB gμBð Þ2S Sþ 1ð Þ=3kB
ð6Þ

where kB is Boltzmann’s constant, z is the number of nearest neighbour
block spins, and J is the exchange integral between the nearest block
spins in the renormalisation group transformations.

The average number density of an electron in the absence or
presence of H is given by

Z∞
0

f εð Þdε ¼
Z∞
0

dε

1þ exp
ε−ε F

kBT

¼
Z∞
0

dε

1þ exp
ε � μBH � eEL� ℏω−ε F

kBTeff

≡ kBT ln 1þ exp
ε F

kBT

� �
¼ kBTeff ln 1þ exp

− �μBH � eEL� ℏω−ε Fð Þ
kBTeff

� �
ð7Þ

where f(ε) is the Fermi-Dirac distribution,N(ε) is the density of states,βi

are positive constant parameters, and εF is the Fermi energy.
Here the effective temperature is given by

kBTeff ≡ kBT � βHμBH � βEeEL� βωℏω:

Let us now consider the distribution of anyonic block spins.

The number density is then given as

b~nkN ¼
tr
�
e
−β
X
l

εl−μð Þ~nl

~nk

�
Z

~nk ¼ S; S−1; S−2; ::::::;0

Z ¼ tr
�
e
−β
X
l

εl−μð Þ~nl
�

ð8Þ

and using derived relationships 11½ � such as

b~nkN⇔

∂
∂ β εk−μð Þf g tr

�
e
−β
X
l

εl−μð Þ~nl
�

Z

ð9Þ

the distribution function of anyonic block spins can be rewritten as

f anyon ¼ S
2
BS

2
gμBH

S
2
β

� �
þ S
2

Substituting gμBH⇒gμBH � βE

βH
eEL� ℏω �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ Δ2

q

β ¼ 1
kBT

ð10Þ

where ε, εl represent kinetic energies, and μ is the chemical potential.
Using the BCS scheme [12], the superconducting gapΔ and bandgap

Eg from the triplet-like pairing of block spins with parallel spin configu-
ration, S

2 ;
S
2

� �
can be obtained as

−1 ¼ N ε Fð Þ UBCS þ Ucj jð Þ
Zℏω
0

dε SBS
2

gS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ Δ2

p
= 2kBTð Þ

n o
þ S−1

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ Δ2

p

≈N ε Fð Þ UBCS þ Ucj jð Þ½
S
S
2

S
2
þ 1

� �

3
S
2
S

gℏω
2kBT

þ S−1ð Þ
Zℏω
0

dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ Δ2

p �

−1 ¼ N ε Fð Þ UBCS þ Ucj jð Þ
Zℏω
0

dε S~BS
2

gS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
q

= 2kBTð Þ
	 


þ S−1
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S
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gℏω
2kBT
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Zℏω
0

dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
q �
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sinh
1

1−S
1
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S
S
2

S
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2
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>>:

9>>=
>>;

2
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3
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ð11Þ

where the real value of Δk → imaginary value of Eg,, and Eg is the band
gap while the imaginary part is f π

2−θ
� �

for the real part of f(θ) with the
phase angle θ, and N(εF) is the density of states at the Fermi level. If V=
UBCS+UcN0, the superconducting gap becomes zero but the band gap is
nonzero. UBCS (Uc) is the BCS-type phonon-mediated interaction
(Coulomb interaction) between block spins, which are obtained in the
effective single electron approximation of block spins with scaled spin
values, with appropriate values of effective mass and effective charge,
m *=Nme N Nme (me : the mass of bare electron), e *=Ne, respec-
tively. Here, if the triplet pairs occur two-dimensionally, i.e., 1= S, then
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