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We use the Green function formulation of a dielectric response formalism to study the dynamic polarization of a
rough metal surface by a single charged particle and by a pair of charged particles that move parallel to the
surface. While the surface roughness is treated nonperturbatively, the plasmon excitation of the metal electron
gas is described locally.We find that themagnitudes of both the image potential and the stopping power of a sin-
gle particle are increased by the increasing roughness and decreasing correlation length of the surface. On the
other hand, both the long-range wake potential of a single charged particle and the interaction potential
between two particles areweakly affected by the surface roughness. However, the strongest effects of the surface
roughness are seen in the correlated stopping power of two charged particles, giving rise to oscillations in the
dependence of the stopping ratio on their distance, both when the interparticle axis is perpendicular to their
direction of motion and when the wake-related oscillations are damped by adiabatic suppression of plasmon
excitations at low particle speeds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Interaction of fast moving charged particles with metal surfaces has
been studied in the context of ion-surface grazing scattering [1] and
reflection electron energy loss spectroscopy (REELS) [2]. Those experi-
mental techniques provide important information about excitation of
the collective electron modes, or plasmons, of interest in the ongoing
research in nano-plasmonics [3] and nano-optics [4]. In particular, this
problem was recently revived by the novel work of Nelayah et al. who
have developed a method of selectively exciting plasmon eigenmodes
of nanometer-sized metal particles with aloof electron beams [5].

The effects of the roughness of metal surfaces were thoroughly stud-
ied in the context of nano-optics of surface plasmon–polaritons [4], as
well as in the plasmon spectroscopy via REELS, both theoretically
[6–8] and experimentally [9,10]. It was shown that the roughness of
sputtered metal surfaces may be characterized by a standard deviation
of δ ~ 1 nm and the lateral correlation length a ∼ 10 nm [11], whereas
the surfaces of metal films grown on various substrates via molecular
beam epitaxy may exhibit much larger roughness with δ ~ 10 nm and
a ≲ μm [10]. In both classes of targets, the REELS exhibited clear signa-
tures of surface roughness in themeasured plasmon spectra [9,10]. How-
ever, much less is known about the effects of surface roughness in the
case of fast ions moving under glancing angle of incidence upon metal
surfaces [1,12,13]. Since dynamic polarization of ametal surface provides

the dominantmechanisms of energy loss and the image attractionwhen
the incident charged particles move at large distances (almost) parallel
to the surface, it is clearly desirable to estimate the effects of the atomic
scale roughness on the process of surface plasmon excitation.

Moreover, motivated by observations made in the scattering of
molecules on solid surfaces [14–16], it is worthwhile exploring the
phenomenology that may arise in grazing scattering of the molecular
projectiles in the presence of surface roughness. Such processesmay in-
clude dissociation of the incident molecule [17,18], Coulomb explosion
of its ionic fragments [19,20], vicinage effect in the energy loss of
these fragments [21], and secondary electron emission from the surface
[16]. Therefore, it is interesting to explore, e.g., the effects of roughness
of nano-structured metal surfaces [11] on the dynamics of Coulomb
explosion, as well as on the vicinage effects in the energy loss of a pair
of spatially correlated ions moving parallel to the surface.

In this work we use the nonperturbative results for the electrostatic
Green's function for a roughmetal surface described by a local dielectric
function, which was developed by Rahman and Maradudin [7,8], and
invoke the formalism that was recently used to evaluate the dynamic
polarization of a supported graphene by correlated external charges
[22]. In particular, we calculate the wake potential due to single point
charge [23], its energy loss rate and the dynamic image potential, as
well as the dynamically screened inter-particle interaction energy and
the vicinage energy loss ratio for two co-moving point charges above
a roughmetal surface [24]. In particular, we investigate particles moving
in the range of speeds on the order of several units of the Bohr velocity vB
(corresponding to a proton kinetic energy of 25 keV), for which the rate
of plasmon excitation on metal surfaces reaches peak values [25].
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After outlining the theoretical model, we present and discuss our
numerical results, and conclude this work with a short summary. A
summary of the expressions used for the Green's function is given in
the Appendix A. Note that we use Gaussian electrostatic units.

2. Theory

We use a Cartesian coordinate system with coordinates r = {R, z},
where R = {x, y} is a position in the z = 0 plane. We assume that
metal occupies region V1 defined by z ≤ s(R) and its electrostatic
response is described by a frequency-dependent relative dielectric con-
stant ϵ(ω), whereas the region V2 defined by z N s(R) is vacuum or air.
Here s(R) is a random function that describes the profile of the metal
surface, which is assumed to have a zero mean,

s Rð Þh i ¼ 0; ð1Þ

where 〈 ⋯ 〉 stands for an ensemble average over all realizations of the
metal surface roughness. If we further assume that the surface presents
a translationally invariant and isotropic landscape, then the auto-
correlation function of the process s(R) may be written as

s Rð Þs R′
� �D E

¼ δ2 C R−R′
��� ���� �

; ð2Þ

where δ2≡〈s2(R)〉 is the variance in the single-point height fluctuations,
and C(R) is the reduced auto-correlation function, such that C(0) = 1
and C(R) → 0 when R → ∞ with a characteristic length scale R ∼ a that
describes the longitudinal correlation length of the surface roughness.

Rahman and Maradudin have shown that the Green's function (GF)
for the Poisson equation, G(r, r′; t− t′), in the presence of such surface
may be evaluated in a nonperturbative manner assuming that s(R) is a
Gaussian process with small magnitude [7,8]. Hence, the ensemble
average of the GF retains the translational invariance of the surface,
G(r, r′; t− t′) = G(R− R′, z, z′; t− t′), allowing one to define a Fourier
transform (FT) of the GF (FTGF) with respect to position R and time t,eG Q ; z; z′;ω
� �

, via

G R−R′
; z; z′; t−t′

� �
¼ ∫ d2Q

2πð Þ2 ∫
∞
−∞

dω
2π

eiQ ⋅ R−R′ð Þ−iω t−t′ð ÞeG Q ; z; z′;ω
� �

;

ð3Þ

where Q = {Qx, Qy} is a two-dimensional (2D) wavevector. When
the source point z′ is in the region V2, we may write the FTGF aseG Q ; z; z′;ω
� �

¼ eGC Q ; z; z′
� �

þ eGind Q ; z; z′;ω
� �

, where eGC Q ; z; z′
� �

¼
2π=Qð Þe−Q z−z′j j corresponds to the bare Coulomb interaction,
whereas the screened interaction by the induced charge in the
metal surface may be written as [7,8]

eG ind Q ; z; z′;ω
� �

¼ 2π
Q

e−Qz′ A Q ;ωð Þe−Qz for z∈ V2;

B Q ;ωð ÞeQz for z∈ V1;

(
ð4Þ

where Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

x þ Q2
y

q
, and the coefficients A(Q, ω) and B(Q, ω) are

listed in the Appendix A. We note that the statements z ∈ V1,2

strictly mean z b min{s(R)} and z N max{s(R)}, respectively, but
we shall assume that the point z may be considered “sufficiently”
far outside the rough region of the surface if |z| ≳ 2 δ. In the limit
of a flat surface with δ = 0, the coefficients A and B are simply
reduced to

A0 ωð Þ ¼ 1−� ωð Þ
1þ � ωð Þ ð5Þ

B0 ωð Þ ¼ 2
1þ � ωð Þ: ð6Þ

We further assume that N point-charge particles with charges Zje
(where e N 0 is the proton charge and j = 1, 2, …, N) move with the
same velocity v parallel to the z = 0 plane. Thus, their distribution
may be described by a time-dependent density ρ(r, t) = ρ0(R − vt, z),
where ρ0(R, z) is the distribution in their own moving frame of refer-
ence. This picture corresponds to a distribution of ionic fragments
resulting from Coulomb explosion of a cluster grazingly scattered from
ametal surface, where the relativemotion of the fragmentswith respect
to each other may be treated as adiabatic within the moving frame of
reference [16]. Denoting the position of the jth particle in that frame
by rj = {Rj, zj} with zj ∈ V2, we may write

ρ0 R; zð Þ ¼ e
XN
j¼1

Zjδ r−rj
� �

; ð7Þ

where δ(r − rj) = δ(R − Rj)δ(z − zj) is a 3D delta function. Therefore,
with the induced potential given by

Φind r; tð Þ ¼ ∫d3r′∫
∞

−∞
dt′ Gind r; r′; t−t′

� �
ρ r′; t′
� �

; ð8Þ

we may express the total induced electrostatic (self-) energy of the
assembly of N particles as [16]

Uind ¼ 1
2
∫d3r ρ r; tð ÞΦind r; tð Þ

¼ 1
2
∫dz∫dz′∫ d2Q

2πð Þ2
eG ind Q ; z; z′;Q ⋅v

� �eρ0
� Q ; zð Þeρ0 Q ; z′

� �
¼ 1

2
∫ d2Q

2πð Þ2
2π
Q

F Qð Þℜ A Q ;Q⋅vð Þ½ �;

ð9Þ

where eρ0 Q ; zð Þ is a 2D spatial FT of the charge density in Eq. (7), while
the charge form factor of the assembly is defined by

F Qð Þ ¼ e2
XN
j¼1

Zj e−iQ ⋅Rj−Qzj

������
������
2

¼ e2
XN
j¼1

Z2
j e−2Qzj þ e2

XN
j¼1

XN
j≠‘¼1

ZjZ‘ eiQ⋅ R‘−Rjð Þe−q zjþz‘ð Þ:

ð10Þ

In a similarmanner, onemay also define the rate of energy loss of the
assembly of N particles by [26]

dE
dt

¼ −∫d3r ρ r; tð Þ ∂∂tΦind R; z; tð Þ

¼ −∫ d2Q
2πð Þ2

2π
Q

F Qð Þ Q ⋅vð Þℑ A Q ;Q⋅vð Þ½ �: ð11Þ

In the final expressions of Eqs. (9) and (11) we have used the
symmetry of the coefficient, A*(Q , ω) = A(Q , − ω).

Using Eq. (10) in Eq. (9), wemay express the induced self-energy as

Uind ¼
XN
j¼1

Z2
j V im zj

� �
þ Uvic; ð12Þ

where the first term represents independent contributions due to the
self-energies of individual particles, which may be expressed in terms
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