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We develop a newmethod for calculating the electrostatic surface and bulk plasmonmodes of a spherical metal
nanoparticle, by taking into account the quantumnonlocal effects. To describe these phenomena, we develop an-
alytical theory based on the quantum hydrodynamical model of plasmon excitation. We derive new dispersion
relation for the system and investigate its differences with previous treatments based on the standard nonlocal
model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It has been realized for a long time that smallmetallic spheres can sup-
port surface plasma (SP) oscillations [1]. Also, in the local model [2,3] it is
well-known that metallic spherical nanoparticles in vacuum, exhibit res-
onant absorption of light at the dipole SP frequencyω1 ¼ ωp=

ffiffiffi
3

p
, where

ωp, is the plasma frequency. This frequency, is just thefirst in a series of SP
modes of the sphere, asωℓ ¼ ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ= 2ℓþ 1ð Þp

[4–6]. An important next
step was made in Ref. [7], where the standard hydrodynamic (SHD)
model of electron gas was applied to study the plasmons in metallic
spheres. However, it was limited in applications to the nondispersive
limit [8]. Then the investigation of the nonlocal effects in the response
function of small metal spheres has been followed by Lushnikov and
Simonov [9], using the quantum mechanical random-phase approxima-
tion (RPA) and by Ascarelli and Cini [10] with the SHD model [7,8].
Dasgupta [11] obtained a pair of matrix equations describing the SP
modes dispersion for a very small spherical metal particle, by means of
the quantummechanical RPA. Furthermore, Ruppin [12,13], in the pres-
ence of the spatial dispersion and surface diffuseness, calculated the fre-
quencies of the plasmons of small metal spheres, by employing the SHD
theory. In this way, Ogale et al. [14], derived the SP modes dispersion re-
lation for spherical metallic particles in the following two cases: (1) a
sharp surface cut off in electrondensity and (2) a diffused electrondensity
at the surface. Dasgupta and Fuchs [15], developed a simple semiclassical
method for calculating the polarizability of a very small spherical particle
by taking into account the nonlocal nature of the dielectric response.
Barberan and Bausells [16], studied the collective modes of metal sphere,

including bulk-type modes [17], using the SHD model. Fuchs and Claro
[18], investigated the multipolar response of a small metallic sphere
with use of a nonlocal dielectric function.
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Fig. 1. Dispersion curves of surface modes (n= 0) in a spherical nanoparticle for different
values of the parameter ℓ vs. the variable η= aωp/α. For the other parameters the sodium
values have been employed. For ℓ= 0 the surface mode is not possible. The results for the
SNL dispersion relation are shown by the dashed red curves. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)
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However, it is well-known that the classical electronic pressure in
the SHDmodelmay not suffice for studying the nonlocal effects for elec-
tron excitations in nanometer sized structures [19–25]. Generally, the
quantum effects should be considered in an electron fluid system
when thedeBrogliewavelength associatedwith the electrons is compa-
rable to dimension of the system. Among the different theoretical
models for the study of the quantum effects in the solid state plasma,
the quantum hydrodynamic (QHD) [26–30] has become popular for
its extension of the usual fluid model to one incorporating the quantum
effects.

In the present work, following our previous paper [23–25] and mo-
tivated by the recent works given in Refs. [19–22], we study the quan-
tum nonlocal effects on the optical properties of spherical metal
nanoparticles by means of the linearized QHD theory. In this way, the
frequency of surface and bulk plasmon modes of system can be deter-
mined in the non-retarded (electrostatic) approximation by solving La-
place equation with suitable additional quantum boundary conditions
for the surface charge densities, according to themore recent results ob-
tained by Miskovic et al. [22]. Let us note that the electrostatic approxi-
mation,which neglects the effects of retardation, is valid for the systems
whose dimensions are much smaller than the wavelength of incident
light.

The rest of this paper is presented in the followingway. In Section 2,
we derive main equations of our model. Numerical results are
discussed in Section 3. We conclude with a summary of our results
in Section 4.

2. Basic theory

In order to carry out the calculations of the quantum effects on
the surface and bulk plasmon modes of a spherical metal nanoparti-
cle of radius a bounded by vacuum, we start with the linearized
QHD theory of an electron gas [22–24]. The appropriate equations;
(1) the force equation, (2) Poisson equation, and (3) the continuity
equation; are

∂
∂tΨ r; tð Þ ¼ −

ω2
p

4πen0
Φ r; tð Þ þ α2

n0
n r; tð Þ−β2

n0
∇2n r; tð Þ
h i

; ð1Þ

∇2Φ r; tð Þ ¼ 4πen r; tð Þ; ð2Þ

∇2Ψ r; tð Þ ¼ 1
n0

∂
∂t n r; tð Þ; ð3Þ

Fig. 2. Same as Fig. 1, but for bulk modes (n ≠ 0). Panels (al)–(a4) illustrate different values of the parameter ℓ.

54 A. Moradi / Surface Science 637–638 (2015) 53–57



Download English Version:

https://daneshyari.com/en/article/5421857

Download Persian Version:

https://daneshyari.com/article/5421857

Daneshyari.com

https://daneshyari.com/en/article/5421857
https://daneshyari.com/article/5421857
https://daneshyari.com

