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We present some properties of an interacting N-fermion system on a cylindrical surface focusing in the quantum
mechanical size effects of the ground-state observables. We use an effective zero-range two-fermion interaction
which allows for an analytical Hartree–Fock approach. Within this model, quantum size effects can be under-
stood as a consequence of filling states in the Fermi sea in which naturally arises a clear dependence on the
Fermimomentum and the cylinder radius. Particularly, themodel shows that the difference between the surface
and bulk energies does not depend on the strength interaction. A relationship between the chemical potential
and the bulk energy is analytically derived. The approach is also suitable for carbon nanotubes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanics in one-dimensional N-particle systems has
been historically studied because its simplicity for some two-body inter-
actions, which allow for analytical solutions of themany-body problem.
Particularly, it is the case of the N-boson(fermion) systems with two-
body contact interactions [1,2]. Such solutions are useful in quantum
statistical physics [3]. The contact interaction has also been used within
the density functional theory [4] aiming to provide more insights to a
better understanding of this theory [5]. It may be of importance in
more involved quantum-mechanical N-body problems with higher
dimensions. Quantum mechanics in two-dimensions (2D) differs in
many aspects from the one-dimensional (1D) and three-dimensional
(3D) cases. Particularly, the centrifugal barrier is zero or positive in
3D, whereas in 2D the s-wave barrier is in fact negative. Consequently,
two particles in 2D are at the threshold of binding even when they do
not interact, i.e., an infinitesimal amount of attraction produces a
bound state. In 3D occurs a complete different situation, since it is well-
known that a finite amount of attraction is required to produce two-
body bound states. The effect of the dimension in the quantum many-
body problem is still an interesting issue. Particularly, a large theoretical
avenue has been opened for low dimensional quantum-mechanical
systems since the phenomenal nanoscience growth [6]. For example,
recently the jellium model in condensed matter [7] has been applied to
calculate the energy in a finite two-dimensional fully spin-polarized
electron gas in an analytical way [8], aiming the investigation of how
the energy converges towards the thermodynamic bulk limit.

From theHugenholtz–VanHove theorem [9], valid for an interacting
N-body system and for zero temperature, the chemical potential reads

μ ¼ E þ PΩ
N

; ð1Þ

where E, P and Ω are the total energy, pressure and volume (in the 3D
case) or area (in the 2D case) of the system, respectively. By studying
general average properties of a three-dimensional liquid system, the
authors of [10] found a way to describe the chemical potential in terms
of a bulk energy and a potential step at the surface. It has been done by
extending the Budd–Vannimenus theorem [11] to include volume
effects. The study of [10] allows the separation of volume and surface
effects in consistency with Eq. (1). In short, Eq. (1) can be rewritten as

Nμ ¼ Eb þ PΩ≡ Eb þ Es; ð2Þ

where one can identify PΩ as a surface energy Es. In accordancewith [10]
the surface potential step also accounts for the pressure. Furthermore,
the authors of [10] show that the difference between μ and the energy
per particle is exactly the electrostatic potential step at the surface. The
authors used this finding to investigate a one-dimensional integrable
model for the BCS-BEC crossover in an analytical way. Surface energy
effects have been also studied for finite metallic nanowires [12] and for
transition metal carbides [13].

It is also interesting to have at hand a 2D model for interacting N-
fermion systems, that allow an analytical treatment of the many-body
properties. In particular, it is desirable to have a model that the bulk
and surface effects could be seen separately not only for a flat layer,
but also for a cylindrical surface. The variety of two-dimensional nano-
structures is a rich source for materials to tailor electronic nanodevices
properties. For example: carbon nanotubes, which ideally provide a
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nano-cylinder where electrons in the p-wave orbitals have a high mo-
bility and are the basis for the description of the optical and electronic
properties of these materials [14]. Therefore, a model that catches the
relevant theoretical aspects of the interacting quantum mechanical N-
fermion system not constrained by a specific engineering application,
can be useful and the basis for broad practical usages.

The understanding of the energetics of the fermion gas constituted
by high mobility electrons on the surface, either flat or cylindric, is es-
sential to design the properties of layered materials. In this respect, an
analyticalmodel can play an essential role. In particular, it isworthwhile
to separate the contributions from kinetic and potential energies of the
high mobility electrons to the bulk and surface parts of the total gas en-
ergy. It is reasonable to expect that the potential energy contribution to
the bulk and surface energies is equal in 2D, because the high mobility
fermions are constrained to one layer where the effective forces
among them act. In this case the equality between the potential energy
contributions to the bulk and surface energies is evident for effective
interactions with a range much smaller than the cylinder radius. This
equality should be quite universal for short-range forces as short
range correlations are essentially unaltered when the layer is folded to
form the cylinder. However, this general physical trend is not valid for
the kinetic energy contributions to the surface and bulk energies
when the flat surface is folded to form a cylindric one.

The total kinetic energy of the high mobility fermions is strongly
dependent on the nanotube radius. Constraining the fermions to the
surface of a cylinder, one dimension becomes compact, and the quan-
tum system reacts with states quantized according to the requested
periodic boundary condition. This is not essential at short distances
but changes the infrared or long distance behaviour of the one-body
density, while the two-bodydensity at distances smaller than the radius
are not sensitive to the folding of the 2D layer. All these features are
indeed verified analytically in the schematic model we will discuss in
the following.

In this work we discuss the bulk and surface energy contributions for a
2D electron interacting system on a cylindrical surface. We will explore a
recentmodel based on nonrelativistic quantum field theory [15]. To ob-
tain the properties of the ground state, the Hartree–Fock approximation
is performed analytically for an effective zero-range two-body interaction
given in cylindrical coordinates (z, θ) by

V z; θð Þ ¼ −λ
R
δ zð Þδ θð Þ; ð3Þ

where R is the radius of the cylinder and λ is an unknown strength. In the
model, one assumes for fermions ofmassm a simple Fermi surface defined
by a momentum kF. This model [15] was applied to investigate carbon
nanotube (CNT) properties and λwas eliminated in favour of the ex-
perimental graphene work function value of 4.8 eV [16]. The
graphene limit is achievedwhen one takes the limit of R going to infinity.

This work is organised in four sections. In Section 2, we present the
field-theoretical model for the interacting fermion gas on the 2D cylin-
drical surface and the thermodynamical quantities analytically derived.
In Section 3,we analyse ourmodel by presenting quantitative results for
the energetics of the fermionic system. In Section 4, we conclude with a
summary of the main results.

2. Model

Here we follow the model [15] to compute the thermodynamical
quantities. Our starting point is the fermion Hamiltonian operator
with two-body interactions

H ¼
X
spin

∫d r!
"

1
2m

∇ψ†
s r!
� �

�∇ψs r!
� �

þ 1
2
∫d r!0ψ†

s01
r!

� �
ψ†
s02

� r!0� �
〈 s01s

0
2jv r!0− r!
� ����s1s2 〉 ψs2
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ψs1

r!
� �#

;

ð4Þ

where the local two-body potential can depend also on the spin state,

with matrix elements s01s
0
2jv r!0− r!
� ����s1s2D E

. The fermionic field opera-

tors are quantized according to the standard anticommutation rules, i.e.,

ψs0 r0
!� �

;ψ†
s r!
� �� �

¼ δs0sδ r0
!
− r!

� �
and ψs0 r0

!� �
;ψs r!
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¼ 0 ;

ð5Þ

where the subindex s indicates the spin state. In the model [15] the
effective potential acting on the singlet spin states has matrix elements
given by:

s01s
0
2jv r!0− r!
� ����s1s2D E

¼ λ
2

s01s
0
2j00

	 

δ r!0− r!
� �

00js1s2h i; ð6Þ

where 〈s1s2|SM〉 is the Clebsch–Gordan coefficient. The Hartree–Fock
(HF) treatment of the ground state was detailed in ref. [15] and here
we just highlight the main thermodynamical quantities at zero temper-
ature forN→∞. The higher order correlations are not taken into account
in the HF approximation, but effectively they are included in the equa-
tion of state by fitting the strength of the potential (λ) to the graphene
work-function, which obviously demands the full correlated electron
wave function to be calculated properly. The value of λmay be eliminated
in favour of any chosen many-fermion physical quantity.

The thermodynamical quantities are presented in the following. The
number of electrons on a nanotube surface is given by

N ¼ 2L
π

Xnmax

n¼−nmax

k2F−
n2

R2

 !1=2

; ð7Þ

where nmax is the highest integer smaller than kFR, n/R is the angular
wave number kθ and L is the length of the cylinder. Hereafter we will
use |n| in the summations. The electron surface density is

σ ¼ N
A
; ð8Þ

with A=2πRL being the area of the cylinder surface. The kinetic energy
of the particle in the Fermi level is

T F ¼ k2F
2m

ð9Þ

where kF is the Fermi momentum. The average total bulk energy is
obtained from the matrix element of the Hamiltonian operator in the
ground state, namely, 〈H〉 = 〈T〉 + 〈V〉. The bulk energy is the expecta-
tion value of Eq. (4), which in the HF approximation is given by:

Eb ¼ Hh i ¼ L
3πm

X
jnj≤nmax

k2F þ 2
n2

R2

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F−

n2

R2

s
þ λ

2
σN ð10Þ

which is the total kinetic and potential energies of the electrons in the
system. The surface energy, obtained from the pressure, is given by

Es ¼ −∂ Hh i
∂A A ¼ P:A ¼ 2

3
L
πm

X
jnj≤nmax

k2F−
n2

R2

 !3
2

þ λ
2
σN ð11Þ

where P is the pressure. It is convenient here to introduce a dimension-
less parameter x as

x ¼ kF R; ð12Þ
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