

1 Self-assembly of Ge clusters on highly oriented pyrolytic 2 graphite surfaces

Q1 Masayuki Shimonaka ^a, Yoshiaki Nakamura ^{a,b,*}, Jun Kikkawa ^a, Akira Sakai ^a

4 ^a Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

5 ^b PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

6 ARTICLE INFO

7 Article history:

Received 12 March 2014

Accepted 24 May 2014

Available online xxxx

11 Keywords:

12 HOPG germanium surface clusters

A B S T R A C T

The self-assembly of Ge clusters on highly oriented pyrolytic graphite (HOPG) was investigated by depositing Ge at various temperatures, using *in situ*-scanning electron microscopy under an ultrahigh vacuum. At the first stage of Ge deposition, Ge clusters were formed along the steps on the HOPG surfaces. With an increase in the amount of Ge deposited, nanostructures of Ge self-assembled depending on the deposition temperature used. At room temperature, the Ge clusters merged together, resulting in the formation of dendritic-shaped structures. At high temperatures (200–600 °C), chain structures of Ge clusters were formed along the steps on the HOPG surfaces. The density of the Ge clusters comprising the chains along the chain direction decreased with an increase in the deposition temperature. This can be explained by the diffusion length of the Ge atoms along the steps during chain formation. From this result, an activation energy of ~0.12 eV was determined for the diffusion of the Ge atoms along the HOPG steps. Ostwald ripening of the Ge clusters was also observed by annealing the chain structure of the Ge clusters. By analyzing the change in the Ge cluster density in the chains, an activation energy of ~0.68 eV was obtained for a movement of Ge cluster periphery by attachment and detachment of Ge atoms.

25 © 2014 Elsevier B.V. All rights reserved.

30 1. Introduction

The self-assembly of semiconducting nanostructures has drawn much attention because of their interesting properties such as the quantum confinement effects [1–6] and characteristic optical properties [7–10]. The growth of metal and semiconductor nanostructures on inert substrates like highly oriented pyrolytic graphite (HOPG) has been studied to investigate the intrinsic properties of nanostructured materials [11–15]. Clean HOPG substrate surfaces are easy to prepare by cleavage in the air. The surfaces are chemically inert and compose atomically flat terraces that spread over several 100 nm between atomic steps. The weak interactions between the HOPG and nanostructures on its surface cause the intrinsic properties of the nanostructures to appear. X-ray photoelectron spectroscopy on bismuth on a HOPG surface showed a similar binding energy to that of bulk bismuth [13]. For the group IV semiconductor Si, growth of Si nanostructures on HOPG surfaces has been studied [14]. In this paper, we focus on Ge on HOPG surfaces because Ge is a commonly used semiconductor material used for many purposes, such as high mobility channel materials for field-effect transistors [16] and optical devices with quantum wells [17] or dots [18,19]. However, there are only a few studies that have focused on Ge nanostructures on HOPG surfaces [20]. Studies were carried out

28 on the growth of Ge nanostructures on HOPG surfaces for films deposited at room temperature (RT), where quasi-one-dimensional (1D) Ge nanowires were formed. The temperature dependence of the growth elucidates the growth mechanism of the nanostructures in general. Then, in this study, the growth mechanism of Ge nanostructures was investigated by forming Ge nanostructures on HOPG surfaces under various conditions: various temperatures and deposition amounts. The growth of the Ge nanostructures was determined by the diffusion of Ge atoms along the HOPG surface step edges.

2. Experimental

The experiments were carried out in an ultrahigh vacuum (UHV) chamber at a base pressure of $\sim 1 \times 10^{-8}$ Pa. The UHV chamber was equipped with a scanning electron microscope (SEM) and a Knudsen cell for Ge deposition. Details on the equipment were described elsewhere [21]. Clean HOPG substrates were prepared by cleaving in air and immediately transferring them into the UHV chamber [22]. HOPG substrates were degassed for surface cleaning at ~ 1000 °C in the UHV chamber for several hours. Ge was deposited onto the cleaned HOPG surfaces at various temperatures from RT to 600 °C. During Ge deposition, the pressure in the UHV chamber was maintained below 5.0×10^{-9} Torr. The Ge deposition rate was 0.24 nm/min. The deposition amount of Ge was referred to as the nominal thickness. Heating was conducted by passing an electric current through the HOPG substrates (e.g. ~ 4 A at 600 °C, ~ 13 A at 800 °C). Temperature

* Corresponding author at: Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

E-mail address: nakamura@ee.es.osaka-u.ac.jp (Y. Nakamura).

75 was measured by radiation thermometer. After Ge deposition, *in situ* ob-
76 servations of the sample surfaces were performed by SEM.

77 3. Results and discussion

78 3.1. Growth of Ge clusters on HOPG surfaces

79 Fig. 1(a) and (b) shows SEM images of HOPG samples after 5 nm of
80 Ge was deposited at RT and 400 °C, respectively. The bright contrast re-
81 gions correspond to the deposited Ge atoms. In the case of RT deposition
82 (Fig. 1(a)), deposited Ge atoms spread from the steps to the terraces,
83 leading to the formation of dendritic shapes that looked to be composed
84 of Ge clusters, similar to Au/HOPG [23]. In addition to the dendritic-
85 shaped structures, on the terrace, “flower-shaped” Ge structures also
86 appeared as shown by the arrow in Fig. 1(a). The flower-shaped struc-
87 ture on the terrace was reported in the previous scanning tunneling mi-
88 croscopic (STM) study [20] where Ge deposition amount is small
89 (1.8 nm). For high deposition temperatures (200–600 °C), bright lines
90 were observed along the surface steps. The bright lines in Fig. 1(b)
91 were the chain structures of the Ge clusters and the clusters positioned
92 only at the HOPG surface steps.

93 To investigate the growth of the dendritic-shaped Ge structures, var-
94 ious amounts of Ge were deposited on HOPG surfaces at RT. Figs. 1(a),
95 2(a), and (b) show the surface morphologies of 3–10-nm-thick Ge
96 deposited on HOPG surfaces at RT. Fig. 2(a) shows that Ge clusters
97 only appeared on the step edges initially. Some of the Ge clusters
98 were observed on the terraces, which were presumably stabilized by
99 surface defects or impurities to form the flower-shaped structures.
100 With an increase in the amount of Ge deposited, Ge cluster structures
101 spread from initially-formed clusters at the step sites onto the terraces,
102 resulting in dendritic-shaped Ge structures. In 10 nm Ge deposition, the
103 HOPG surfaces were mostly covered by dendritic-shaped Ge structures.

104 The growth of the chain structures of the Ge clusters was also inves-
105 tigated. Figs. 1(b), 2(c), and (d) show Ge clusters formed by deposition
106 of 3–10-nm-thick Ge at 400 °C. The Ge clusters formed on the edges of
107 the steps and there were no Ge clusters on the terraces for all deposition
108 stages. This indicated that step edges work as nucleation sites mainly.
109 Fig. 3(a)–(c) shows detailed SEM images of Ge cluster chains, which
110 were formed by depositing 5-nm-thick Ge at 200, 400, and 600 °C.
111 Enlarged images (white rectangles) are shown in all of the SEM images.
112 These images demonstrated that the chain structures of the round Ge
113 clusters were formed by 1D alignment of the Ge clusters with certain
114 separations. The 1D density of the Ge clusters, defined as the inverse
115 of the Ge cluster separation, is shown in Fig. 3(d).

116 According to the previous paper [20], Ge structure formed at RT has
117 amorphous structures, and its amorphous Ge was crystallized by an-
118 nealing. High temperature formation has not been investigated in the
119 previous STM study [20]. On the basis on these results, our Ge structures
120 formed at high temperatures were considered to be crystals. As for the
121 relation of crystal orientation between Ge clusters and substrates, fur-
122 ther study is needed.

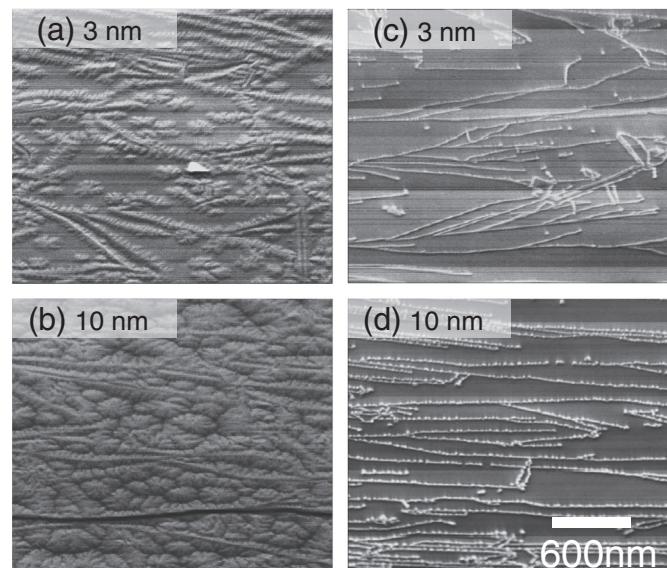


Fig. 2. SEM images after deposition of various amount of Ge on HOPG (a, b) at RT and (c, d) at 400 °C. Deposition amounts were 3 nm (a, c) and 10 nm (b, d).

123 At the first stage of Ge deposition, Ge clusters formed on the step 124 edges of the HOPG surfaces for all the deposition temperatures. This 125 indicated that the Ge atoms accumulated at the trap sites, such as step 126 edges, caused by the inertness of the HOPG surfaces after the Ge 127 atoms diffused through the surface. At RT, we observed dendritic- 128 shaped Ge structures. The mechanism of dendritic growth on the sur- 129 face in general case has been studied as follows [24]. Atom was initially 130 trapped at some site, and worked as the origin of the structure. This was 131 followed by the random work of other atoms and their trap at the adj- 132 acent sites to already-trapped atoms to form random structures. We 133 adopted the similar mechanism that initially-trapping sites were step 134 edges, and then, fractal structures grew on the terraces by the above- 135 mentioned random aggregation [24] resulting in the dendritic shapes. 136

At high temperature, Ge atoms were only stabilized at the step edges 136 presumably due to high evaporation probability on the terrace despite 137 further Ge deposition. After trap of Ge atoms at the step edges, Ge 138 atoms diffused along the step edges where evaporation effect was re- 139duced, and then Ge clusters were formed. At high temperatures, the 140 Ge atoms involved in the Ge cluster growth were the atoms that dif- 141 fused along the step sites after some of surface Ge atoms were trapped 142 at the step edges prior to the evaporation. In this scenario, shown in 143 Fig. 3(e), separation of the Ge clusters in chain structures, seen in 144 Fig. 3(d), was related to the diffusion length of the Ge atoms along the 145 step edges. In the diffusion model for cluster growth, the density of clus- 146 ters, n , can be written as [25]: 147

$$n = \frac{1}{L} \propto \exp\left(-\frac{E_d}{4k_B T}\right), \quad (1)$$

where L is the Ge cluster separation, E_d is the activation energy for diffu- 149 sion along the step edge, k_B is Boltzmann constant, and T is an absolute 150 temperature. The 1D density of the Ge clusters was fitted with Eq. (1), 151 shown by the dotted lines in Fig. 3(d), and E_d was estimated to be 152 0.12 ± 0.01 eV. This value is comparable to that of Ag deposited on 153 HOPG, where the activation energy for diffusion along the steps was re- 154 ported to be 0.14 ± 4.05 eV [26]. In addition, for Au particles deposited 155 on HOPG surfaces at RT, dendritic shapes were formed on the surfaces. 156 The activation energy for the surface diffusion was 0.24 eV [23]. The 157 studies focused on the diffusion of Ge atoms on Si [14,27,28], not on 158 HOPG. The activation energy for Ge atom diffusion into Si was estimated 159 to be 0.65 eV [27]. In another report with Ge on a SiGe buffer layer on Si, 159

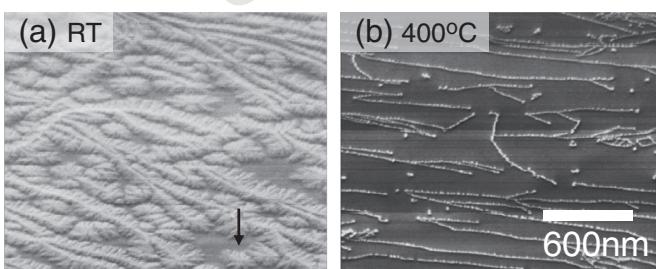


Fig. 1. SEM images after 5 nm of Ge was deposited on HOPG surfaces at (a) RT and (b) 400 °C.

Download English Version:

<https://daneshyari.com/en/article/5422176>

Download Persian Version:

<https://daneshyari.com/article/5422176>

[Daneshyari.com](https://daneshyari.com)