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The structure and the anisotropic properties of the surfaces of face-centred-cubic (FCC)metals have been studied
using the broken-bond model while considering the third and fourth nearest neighbouring (3rd and 4th NN)
interactions. The pair potential expressions are obtained using the Rose–Vinet universal potential equation.
The model is suitable for calculation of the property of a surface with arbitrary crystallographic orientations
and can provide absolute unrelaxed surface energy values using three input parameters, namely the lattice con-
stant, bulk modulus and cohesive energy. These parameters are available for the majority of FCCmetals. The nu-
merical results for 7 FCCmetals have been obtained and comparedwith these obtained from ab initio calculations
and experimental measurements. Good agreement is observed between the two. Taking into account up to the
4th NN interactions, the overall surface energy anisotropy for FCC metals was found to be between 12% to 16%,
and the ratio between the surface energies at (100) and (111) planes was found to be 1.05. These values are
less than those reported by conventional calculations but more similar to experimental measurements. It is
found that the strength of 3rd and 4th NN interactions differs from one element to another, the Ni and Cu inter-
actions being the most significant while the Au, Pt and Pb interactions are the least significant. This suggests that
the polar diagrams of the surface energy of Ni and Cu are different from those of Au, Pt and Pbby showing cusps of
the unconventional {110} and high-index {210}, {311} and possibly {135} poles. This provides explanations to the
recent experimental observations of the {110}, {210}, {311} and {135} facets in equilibrated Ni and Cu crystallines.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interaction between the surface of a crystal and its surroundings
is orientation-dependent. Examples include the enhanced catalytic ca-
pability of some high-index facets of a Pt nanocrystal [1–4], the texture
evolution of abnormal grains on metallic thin films [5,6] and the aniso-
tropic growth of corrosion pits in engineering alloys [7]. All of these phe-
nomena are attributed to the orientation-dependent surface energy,
which appears to be the nature of crystalline materials that possess
structures of long-range order. The study of surface energy anisotropy
is of fundamental importance in the understanding of the behaviours
of engineering metals.

In order to form a complete analysis of surface anisotropy and
completely grasp its nature, its value at all possible crystallographic orien-
tations must be known. However, there is no sophisticated experimental
method that can guarantee the creation of a surface of desired orienta-
tion. The closest experimental feat achievable is usually an equilibrated
crystal containing facets of a few specific orientations. Most of the orien-
tations are rarely seen in experiments. In addition, the surface energy is a

thermodynamic term that varies with temperature, pressure and also
extremely sensitive to the atmosphere [8–13]. Direct measurements of
surface energy anisotropy are unlikely to be achieved. Computational
methods, e.g. the embedded-atom models (EAM) [14–16], have shown
considerable success. Nonetheless, these methods calculate one particu-
lar surface orientation at a time and have only proposed information on
a few low-index facets.

In this study, a broken-bond model which considers up to the fourth
nearest neighbouring (4th NN) interactions has been implemented to
study the structure and properties of FCC metal surfaces. The Rose–
Vinet universal potential equation has been implemented within the
model, which is able to provide the absolute unrelaxed surface energy
of FCC metals at all crystallographic orientations. It relies on only three
input parameters, namely the lattice constant a, the bulk modulus B and
the cohesive energy Ec. The numerical results for 7 FCC metals at 0 K
zero and pressure show good agreement with experimental findings
and ab initio calculations. By considering the 3rd and 4th NN interactions,
the overall anisotropy for FCC metals is found to be roughly 12% to 16%
and the ratio between the surface energy at (100) and (111) is obtained
as 1.05. The values are smaller than conventional findings but in better
agreement with recent experimental measurements. We also discover
that, contrary to popular belief, the {110}, {210}, {311} and {135} facets
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are actually favoured for FCC metals. This explains the existence of these
facets in recent studies on equilibrated Ni and Cu crystallites.

The present article is organised as follows. Section 2 provides details
for the theoretical aspects of the model and introduces the role of the
Rose–Vinet universal potential equation. Section 3 reviews the conven-
tional broken-bond model by Mackenzie et al. [17] and explains the
method to investigate the breaking of NN interactions on surface.
Section 4 presents the numerical results, including both the absolute
surface energy and the polar-diagram of surface energy (γ-plot),
together with comparison and discussion with both experimental and
other theoretical works. Finally Section 5 summarises the work.

2. Theory

In this paper we only consider mono-atomic metals. A simple inter-
pretation of surface energy is the amount of energy required to break all
the chemical bonds during the creation of a pair of new surfaces. In this
sense, the specific surface energy for a surface with outward normal n̂, Γ
n̂ð Þ, could be expressed simply as half of the summation of binding
energy as

Γ n̂ð Þ ¼ 1
2

X
f b bð Þϕb ð1Þ

where ϕb denotes the bond strength or pair-wise interaction energy
between two atoms linked by vector b, and fb is the amount of b type
interactions destroyed for the creation of a pair of such surface. Eq. (1)
is straightforward for covalently bonded crystals. In the case of metallic
materials, on the other hand, the atomic potential energies could not be
fully divided into two-body bondings, thus the term ϕb is not clearly
defined. As suggested by Baskes, EAM type N-body potential yields the
following expression for surface energy [18]:
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where Ec is the cohesive energy of reference lattice; ρi
x and ρi

0 refer to
the background electron density of surface sites and bulk (reference)
site respectively; Zd and Zi denote the coordination number of the
surface site and bulk site atoms respectively; A(x) represents the area
per atom near surface; and finally Fi, the embedding function, generally
takes the following form [18,19]:

F ρð Þ ¼ αiEcρ lnρ ð3Þ

where αi is an adjustable parameter.Wemake a coarse assumption that
ρi
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the above assumption with Eqs. (2) and (3) gives:
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Note that the secondpart of Eq. (4) scaleswith1=Zi
2. Thismeans that

the impact of this N-body part is reduced ifmany coordination shells are
exploited in pair-potential expansion. Suchfinding is in agreementwith
thework by Vitos et al. [20], whoproposed that neglectedN-body terms
can be partly “renormalized” into the so called “effective pair interac-
tions” when many coordination shells are used. A similar concept of
“effective pair potential” is also mentioned by Da silva et al. [21]. Da
silva and co-authors performed ab initio calculation on the surface ener-
gy of 15 different Cu facets and found an “almost perfect” linear rela-
tionship between the surface energy and the number of broken NN
bonds. Such linear scaling of surface energy as a function of the number
of broken NN interactions is also confirmed in ab initio studies on pure
Pb [22] and Ni [23] surfaces.

Base on the above consideration, we decide to neglect the N-body
parts in Eq. (4), but instead consider further NN interactions to compen-
sate such error. The main reason of such simplification is to avoid the
usage of free parameter α, as the present model is intended to be kept
readily assessable from minimal amount of experimental data. Qualita-
tively speaking, the above simplification overestimates the contribution
of 1st NN interactions on surface energy, thus also overestimates the
overall surface energy and anisotropy. The quantitative consequences
of such simplification will be dependent on the actual N-body model
employed. Based on the fact that the term Zd

Zi
typically≥ 0.5 and our con-

sideration includes 4th NN interactions, the multi-body term in Eq. (4)
can be as large as 3% Ec depending on the choice of α. Therefore, it
should be emphasised that the N-body term is still important and
should be taken into account if reliable models are available.

Adopting above simplification, the expansion of the effective pair
potentials based on Eq. (1) yields:

Γ n̂ð Þ ¼ 1
2

f b1 b1
� �
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where bi represents a set of crystallographically equivalent vectors
which belong to the ith NN interactions. Now we make an important
assumption that all ϕbi terms could be described using the same ϕ(r)
potential function. It should be noted that this assumption is only true
when all atoms share identical spherical atomic electron distributions,
which turns out to be more realistic for pure metals. In covalent or
ionic systems, where the atomic electron cloud is polarised, an atom's
1st NN and 2nd NN interactions cannot be described by a single poten-
tial function. Based on this assumption, by choosing a suitable potential
function, the relative significances of the ith NN interactions could be
determined from the difference in inter-atomic distance.

At this point we employ the Rose–Vinet universal interaction equa-
tion [24], which had been repeatedly treated as a fitting target for refer-
ence structures [19]. For a structure in thermal equilibrium the potential
energy, E, of a lattice atom as a function of the inter-atomic distance, r,
is expressed as

E rð Þ ¼ −Ec 1þ a� þ 0:05a�3Þe−a�
�

ð6Þ

a� ¼ η
r
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−1

� �
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η ¼
ffiffiffiffiffiffiffiffiffiffi
9ΩB
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where Ec is the atomic cohesive energy, Ω represents the atomic vol-
ume, B denotes the bulk modulus and re refers to the equilibrium
nearest neighbour (1st NN) distance. The dimensionless anharmonicity
term η controls thewidth of this potential well, which decreases as η in-
creases. Adopting the Rose–Vinet potential function, the strength ratio
between the ith NN and 1st NN interactions (the relative importance
of ith NN as compared to 1st NN), ϕ

bi

ϕ
b1
, can be expressed as a function of

interatomic distance ratio between the ith NN and 1st NN interactions,
bij j
b1j j, and η, in the following form:
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The next step is to determine a cut-off for the number of NN interac-
tions beyondwhich ϕ

bi

ϕ
b1
can be reasonably neglected. This depends on the

value of bij j
b1j j and η. The nature of the bi vectors, and their corresponding
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