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Two ways to calculate the elastic interaction between quantum dots (QDs) in the framework of linear elas-
ticity are introduced and shown to vary in a similar way as the hydrostatic pressure. It is shown that the hy-
drostatic stress is the potential for the elastic interaction energy. The approach was used to estimate
quantitatively the interaction energy between QDs in material systems that may form vertical order,
anticorrelated order and FCC superlattice. The vertical interaction energy is very small compared with the
thermal energy, nevertheless it is just enough to induce vertical ordering of QDs between layers. The attrac-
tive lateral interaction is an order of magnitude smaller than the vertical interaction, therefore ordering of
multilatered QDs is made possible only by the vertical interactions. Several experimental observations are
explained based on this understanding. The lateral interactions are small due to the small stresses set in
the substrate after relief of the misfit strains in the free space. The vertical interactions are larger due to
the large tensile stresses set up in the thin layer of matrix that separates an embedded QD from the free
surface.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Growth of quantum dots (QDs) in multilayered semiconductors is
observed to yield different types of arrays ranging from random
arrays, vertically stacked arrays and vertically staggered arrays. The
last arrays may be laterally random or ordered in FCC-like
superlattices. Ordering has been shown to be the result of substrate
mediated elastic interactions with dots in the underlying layer. The
elastic fields associated with QDs have been analyzed by many re-
searchers who used different methods [1–4]: analytic continuum ap-
proach [e.g., 5–12], numeric continuum approach (finite difference
[e.g., 13,14] or finite element [e.g., 15–17] methods) and atomistic ap-
proach [e.g., 18–21]. In the analytical continuum approach, the QDs
are treated as inclusions in a matrix. The elastic fields due to the lat-
tice mismatch between the QDs and the matrix are obtained by inte-
grating the Green's function over the interface of the inclusions and
the matrix. Only limited geometries are solvable and homogeneity
of the elastic constants is usually assumed. The finite difference and
finite element approaches overcome these limitations. The atomistic
approach describes the strain energy in terms of the potentials be-
tween the atoms and the strain fields are obtained by minimizing
the potential energy. Due to the large number of atoms required in
the analysis, this approach is computationally limited to a single QD.
Comparison between the approaches shows that the continuum ap-
proaches reasonably approximate the atomistic calculations [18].

Following Tersoff et al. [5], Holy et al. [4,7] and other authors con-
sidered a three layer situation consisting of a QD layer, a cupping
layer, made of the material of the substrate and a wetting layer,
made of the material of the dots. They calculated the density of the
elastic energy in the wetting layer on the free surface and proposed
that the favored sites for nucleation and growth of new dots in the
Stransky Krastanov mode are those where the elastic energy density
is minimal. Ignoring the lateral interactions they found that when the
elastic anisotropy factor A≡2C44/(C11–C12)>1.6 (Cij are the elastic con-
stants) and the substrate surface is the (001) crystallographic plane, an
embedded dot creates favored sites that are expected to form a body
centered tetragonal (BCT) superlattice. When Ab0.6 and the substrate
surface is the (111) plane, trigonal or FCC-like superlattices are
expected. In the other cases vertical stacking without lateral order is
expected. A remarkable resemblance between the predictions and the
experimental observations is found in different materials, except for
the BCT superlattice that was not observed [1–4].

Several groups have calculated the elastic energy density in the
wetting layer [1,4,5] and in the cupping layer [13–16]. Apparently
only Liu et al. [15] admitted that the preferred sites for nucleation of
new dots are those where the density of elastic energy in the cupping
layer ismaximal and those sites coincide with sites ofminimum elastic
energy density in thewetting layer. This difference can be explained in
a straightforward way by the considerations in ref. [22]. A buried dot
with lattice parameter larger than that of the substrate, generates
tensile stresses in the cupping layer, made of the substrate material.
The larger the tensile stresses in the cupping layer — the larger the
density of the elastic energy there. On the other hand, on top of the
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cupping layer rests the wetting layer, made of the dot material. It is
severely compressed in the lateral directions, due to the epitaxial re-
lation with the substrate. Thus the minimum elastic energy density in
the wetting layer is found when it is relatively relaxed from the com-
pressive epitaxial stresses by the tensile stresses due to the underly-
ing QD. These sites can be expected to be favored for nucleation of
new QDs and it was indeed observed. While these are qualitative ar-
guments, the actual energy gain of the new dot at a favored site
should be directly calculated. This gain is defined as the interaction
energy between the dots [23].

In the first part of the present work [22] we discussed qualitatively
the elastic interactions among dots in multilayers. In the present part
we rigorously prove two ways to calculate the elastic interactions in
the framework of linear elasticity. From them we deduce a third sim-
ple estimate of the elastic interaction, obtainable from the solution of
the elastic fields of a single dot and show that it is a better estimate
than the elastic energy density in the cupping or the wetting layers.
The three methods are applied and assessed numerically, to quantita-
tively determine the interaction energy in two types of systems
where ordered arrays are observed: simple vertical stacking and ver-
tically staggered stacking. Then the failure to form the expected BCT
superlattice (in A>1 materials with {001} free surface) is quantita-
tively compared with the FCC superlattice (in Ab1 materials with
{111} free surface), which is experimentally observed. Finally the lat-
eral interaction between dots in the same layer is calculated in order
to quantitatively determine its role in the ordering of the QDs.

2. Theory of elastic interactions

2.1. The elastic interaction energy

We follow the derivation of Eshelby in refs. [23,24] of the interaction
energy between two stress sources in infinite solid and adopt it to a
solid with free surfaces. Suppose that in a body with volume Vo,
enclosed by external surfaceΣο there are two systems of internal stress-
es that are due to misfit strains εijT: A whose sources lie entirely within a
surface ΣΑ and B whose sources lie entirely outside ΣΑ (Fig. 1). Both
may be embedded inside the body or attached to its surface.

Let EA and EB denote the total elastic energy when A or B exists
alone in the body. Then the total energy when they exist together
is, within the framework of linear elasticity:

Etot ¼
1
2
∫
Vo

σ ijεijdV ¼ 1
2
∫
Vo

σA
ij þ σB

ij

� �
εAij þ εBij

� �
dV : ð1Þ

Eq. (1) can be written as:

Etot ¼ EA þ EB þ EInt ð2Þ

where,

Eint ¼
1
2
∫
Vo

σA
ijε

B
ij þ σB

ijε
A
ij

� �
dV ð3Þ

is the interaction energy between the stress sources A and B. σij
k and εijk

are respectively the elastic stresses and strains that are due to source
k alone. Now define ui(r), the components of the displacement of
each point r in the material, relative to its position before the misfit
appeared between regions A and B and the matrix. The symmetrized

matrix of the derivatives of the displacements due to A: 1
2 uA

i;j þ uA
j;i

� �

(the subscript, j indicates derivative with respect to xj and repeated
indices are summed over x, y and z) is the elastic strain tensor εijA, ev-
erywhere except in the region A. In the region A the elastic strains are
measured relative to the stress free state of the material A. Namely, the
elastic strains due to A are:

εel;Aij rð Þ ¼
1
2

uA
i;j−uA

j;i

� �
outside ΣA

1
2

uA
i;j−uA

j;i

� �
−εT ;Aij inside ΣA

8><
>:

ð4Þ

In a similar way, the elastic strains due to B are:

εel;Bij rð Þ ¼
1
2

uB
i;j−uB

j;i

� �
outside B; in particular inside ΣA

1
2

uB
i;j−uB

j;i

� �
−εT ;Aij inside B

8><
>:

ð5Þ

The strains measured relative to the stress free state of the matrix:

εC;kkl ¼ 1
2

uk
i;j−uk

j;i

� �
ð6Þ

were termed by Eshelby the constraint strain.
Returning to Eq. (3), one finds that the two terms in the brackets are

equal by the reciprocity theorem (σij
AεijB=CijklεklAεijB=CklijεklAεijB=σkl

BεklA

due to Hooke's law and the symmetry of the elastic constants tensor).
Eshelby divided the integral in Eq. (3) into an integral inside ΣΑ

and an integral outside ΣΑ. Each integral was written only in terms
of the constraint stains (derivatives of ui(r)):

Eint ¼ ∫inside ΣAσ
A
iju

B
i;jdV þ ∫outside ΣAσ

B
iju

A
i;jdV ð7Þ

To express the first term he wrote the sum of the derivatives of
σijui and applied the equilibrium equations σij,j=0:

σ ijui

� �
;j
¼ σ ij;jui þ σ ijui;j ¼ σ ijui;j ð8Þ

Application of Gauss's theorem on Eq. (8) converts the first term
in Eq. (7) into ∫ΣAσij

Aui
BdSj. Similarly the second term becomes:

∫Σoσij
Bui

AdSj−∫ΣAσij
Bui

AdSj, the minus sign in the second integral is
due to nj being oriented outward normal to ΣΑ. Τhe first integral
over Σo vanishes due to the boundary conditions on the free surface
Σo: σij

Bnj=0. Combining these results into Eq. (7) one is left with
two terms:

Eint ¼ ∫ΣA σA
iju

B
i −σB

iju
A
i

� �
dSj ð9Þ

The surface ΣA can now be taken as a surface enclosing an island A.
Thus Eq. (9) expresses the interaction energy between A and B in the
form of an integral over a surface surrounding only one of the systems
of the internal stresses.

Σοο

ΣΑA
B

Vo

VA

Fig. 1. A schematic illustration of a matrix and two stress sources embedded in or at-
tached to the surface of the matrix.
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