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According to the scaling idea of local slope, we investigate the anomalous dynamic scaling of a class of
nonequilibrium conserved growth equations in (1+1)- and (2+1)-dimensions using numerical integration.
The conserved growth models include the linear Molecular-Beam Epitaxy (LMBE), the nonlinear Villain–Lai–
Das Sarma (VLDS) and Sun–Guo–Grant (SGG) equations. To suppress the instability in the VLDS and SGG
equations, the nonlinear terms are replaced by exponentially decreasing functions. The critical exponents in
different growth regions are obtained. Our results are consistent with the corresponding analytical predic-
tions. The anomalous scaling properties are proved in (1+1)-dimensional LMBE and VLDS equations for
Molecular-Beam Epitaxy (MBE) growth. However, anomalous roughening in the LMBE and VLDS surfaces is
very weak in the physically relevant case of (2+1)-dimensions. Furthermore, we find that, in both (1+1)-
and (2+1)-dimensions, anomalous scaling behavior does not appear in the SGG surface based on scaling
approach and numerical evidence.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The study of growing interfaces has been a very active field for
many years. Many studies focus on the technologically relevant
growth of thin films or nanostructures, and growing interfaces are
also encountered in various other physical, chemical, or biological
systems, ranging from bacterial growth to diffusion fronts. Over the
years important insights into the behavior of non-equilibrium growth
processes have been gained through the study of simple model sys-
tems that capture the most important aspects of real experimental
systems [1–4].

In the dynamic scaling theory of surface roughening, one of the suc-
cessful approaches to study the scaling behavior of growing surfaces is
by formulating continuum Langevin-type equationswhich are assumed
to incorporate the physics of growth processes and then applying ana-
lytical or numerical analysis to the growth equations so as to determine
their scaling properties. The conserved growth equations with additive
noise are generally used to model nonequilibrium surface growth in
Molecular-Beam Epitaxy (MBE). The conservation is a consequence of
absence of bulk vacancies, overhangs, and desorption (evaporation of
atoms from the substrate) under optimum MBE growth conditions.
Thus, integrating over the whole sample area gives the number of par-
ticles deposited.

In a coarse-grained picture, the growing surface is described by the
height h r⇀; tð Þ, which is a continuous function of spatial variable r⇀ and

growth time t. Generally, one can describe stochastic (Langevin) differ-
ential equations for surface evolution in the form
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represent the influx of particles in deposition processes. The noises are
usually considered to beGaussian, zeromean, uncorrelated in space and
time, and either nonconserved,
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where d is the substrate dimension and D (or Dc) denotes the noise
amplitude.

To describe MBE growth processes, one assumes that the dominant
physical mechanism of surface smoothing is surface diffusion, without
desorption, overhangs and bulk vacancies. These assumptions are well
satisfied in a typical experimental situation for MBE growth at suffi-
ciently high temperatures. Then the model is volume conserving and
the functionR ∇h r⇀; tð Þf ghas a formR ∇h r⇀; tð Þf g ¼ ∇· j

⇀
, where the cur-

rent j
⇀
r⇀; tð Þ is a function of the derivatives of h r⇀; tð Þ. A simple possibility

is j
⇀ ∝∇∇2h, which describes surface diffusion in equilibrium. The cur-

rent is proportional to the gradient of chemical potential, which is, in
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turn, given by the surface curvature ∇ 2h. We will refer to Eq. (1),
containing only this fourth-order term, as the linear diffusion
model. We call the most simple conserved growth model as linear
Molecular-Beam Epitaxy (LMBE) equation [1].

In general, the current contains additional nonlinear and higher-
order terms. However, asymptotically, only some of these terms may
be relevant and lead to certain well-defined values of exponents. Cross-
over to these true exponents caused by asymptotically irrelevant terms
may be, however, rather slow. In the context of kinetic roughening in
models for MBE growth, one of the most possible nonlinear leading
terms has been well studied: j

⇀∝∇ ∇hð Þ2, the corresponding term
∇ 2(∇h)2 in the Langevin-type equation is called the nonlinear term
of a conserved growth. Then the functionR ∇h r⇀; tð Þf g has a more gen-
eral form R ¼ −K∇4h r⇀; tð Þ þ λ∇2 ∇hð Þ2. Adding the random noise
ξ cð Þ r⇀; tð Þ to R, the stochastic growth equations are called Villain–Lai–
Das Sarma (VLDS) equation with a nonconserved noise and Sun–Guo–
Grant (SGG) equation with a conserved noise, respectively [5–7].

Although the dynamic scaling behavior of the conserved growth
equations describing MBE has been extensively investigated numeri-
cally and analytically, many open problems still remain, such as
anomalous scaling behavior, mound formation, and close correspon-
dence of the continuum growth equations and the related atomistic
models. The purpose of this work is to examine, in detail, kinetic
roughening, anomalous scaling and critical behavior of the continu-
um stochastic equations for epitaxial growth processes. We study
spatially discretized versions of LMBE, VLDS and SGG equations
using numerical integration. The replacement of nonlinear terms in
VLDS and SGG equations is used by exponentially decreasing func-
tions to suppress instabilities. The critical exponents in different
growth regions are obtained through interface width and equal-
time height difference correlation function. Our numerical results
concern the evidences of anomalous scaling of (1+1)-dimensional
growth surface, which are in excellent agreement with the simple
theoretical analysis: a power-counting analysis (LMBE) and Flory-
type arguments (VLDS). However, our results also imply that anoma-
lous roughening in the LMBE and VLDS surfaces is very weak in the
physically relevant case of (2+1)-dimensions. Furthermore, we
find that, whether in (1+1)- or (2+1)-dimensions, the SGG surface
always exhibits normal self-affine fractal structure.

The rest of this paper is organized as follows. Section 2 contains a brief
review of scaling properties in surface growth. In Section 3, the conserved
growth equations and their corresponding local slopes are described, and
the anomalous scaling behavior of these conserved equations is discussed
according to the scaling idea of local slope. Section 4 contains the finite-
difference approximations of the conserved growth equations. The expo-
nentially decreasing functions are adopted to suppress growth instabil-
ities in the discretized VLDS and SGG equations. In Section 5, extensive
numerical results of the conserved growth equations and their local
derivatives are obtained. Surface morphologies and anomalous scaling
in these growth models are also discussed. The following conclusions
are drawn from the present study in Section 6.

2. Scaling properties in growth surface

Growth processes have been shown to exhibit scaling properties that
allow one to divide the models into universality classes [1–4]. A rough
surface may be characterized by the fluctuations of the growth height
around its mean value. One of the most important physical quantities
related to the surface roughening is the global interface width W(L,t)
defined as

W L; tð Þ ¼ 1ffiffiffi
L

p ∑r⇀ h r
⇀
; t
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; ð4Þ

where hL ¼ 1=Lð Þ∑r⇀h r
⇀
; t

� �
denotes the spatial average, and the

brackets〈⋯〉 denote an average over different realizations. In many

cases, starting from an initially flat surface, the global width is observed
to satisfy the dynamic scaling form of Family-Vicsek [8]

W L; tð Þ ¼ Lα f t=Lz
� �

; ð5Þ

where the scaling function f(u) behaves as

f uð Þe uα if ubb1;
const: if u >> 1:

	
ð6Þ

A typical plot of the time evolution of the global width has two re-
gions separated by a crossover time t× (t×~Lz). Initially, the interface
width increases as a power of time, W(L,t)~ tβ (tbb t×), where β is
called growth exponent and describes the short-time behavior of
the surface. However, the power law increasing in width does not
continue indefinitely, but is followed by a saturation region during
which the width reaches a saturation value, W(L,t)~Lα (t>> t×),
where α, is called the roughness exponent, and is a second critical ex-
ponent that characterizes the roughness of the saturated interface.
The ratio z=α/β is a dynamic exponent, which describes the depen-
dence of the crossover time t× with the system size through the rela-
tion t×~Lz. Two of them can determine the universality class of the
growth models under study.

In addition to the global interface width, the equal-time height
difference correlation function G(l,t) is also very important and infor-
mative. Here, G(l,t) is defined as

G l; tð Þ ¼ h r
⇀ þ l

⇀
; t


 �
−h r

⇀
; t

� �
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; ð7Þ

where the brackets 〈⋯〉 denote ensemble average. The local rough-
ness exponent αloc can be determined from the relation

G l; tð Þel2αloc lbbLð Þ: ð8Þ

The relation α=αloc is always satisfied in a normal self-affine
interface.

Recently, a most intriguing feature of some growth models is that
the above standard Family-Vicsek scaling of the global interface
width differs substantially from the scaling behavior of the local inter-
face fluctuations (measured either by the local width or the height
difference correlation function), i.e. anomalous roughening [9–15].
This leads to the existence of an independent critical exponent
(i.e. αloc) which characterizes the local interface fluctuations on scales
lbbL and differs from the global roughness exponent α. The anomalous
scaling behavior has also beenwidely observed experimentally, ranging
from MBE growth [16,17], interface advance in porous media [18,19],
material fracture surfaces [20–23], sputter-deposition growth [24–26],
electrodeposition growth [27–29], even to plant callus and tumor
growth [30–32].

In order to investigate anomalous dynamic behavior in growth
surfaces, López et al. [10–13] proposed a new scaling function instead
of the normal Family-Vicsek scaling when an anomalous roughening
takes place for growth processes, and scales as

w l; tð Þetβf A l=t1=z
� �

; ð9Þ

with an anomalous scaling function given

f A uð Þe uαloc if ubb1;
const: if u >> 1;

	
ð10Þ

instead of Eq. (5). The normal self-affine Family-Vicsek scaling [8] is
then recovered when α=αloc.

It is important to note that the mean square local slope (average
surface gradient) has a nontrivial dynamics [10–13]. The local slope
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