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We discuss the size selection of metallic 2D clusters in cases where the growth proceeds on flat or wedged
surfaces. The growth of nanoclusters is modelled using reaction kinetic model rate equations, where the
kinetics are described by size dependent attachment and detachment rates, and the energetics are described
through the free energy difference of the clusters. The model describes how the optimum stationary size and
small size dispersion are reached, and what are the properties of the stationary size distribution. In addition
to the geometrical factors, it is shown that the deposition flux can also be used to tune the size distribution
towards the desired property.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Metallic nanoclusters are of much interest because of their unique
properties and diverse technological applications [1,2]. The possibility
to affect the self assembly process in a controlled and reproducible
waywould allow the fabrication of novel nanomaterials such as highly
efficient quantum dots. Manufacturing quantum dot layers for optical
or electronic devices requires, above all, narrow size distribution of
clusters [3]. In other cases, optimal size dispersion of cluster sizes
might be required. In addition, the possibility to tailor the specific
voltage and optical wavelength of the material by shifting the size
distribution of clusters in a controlled fashion would be very
beneficial indeed. We investigate the possibility to tailor the
expectation value, standard deviation and dispersion of cluster size
distributions in a controlled way by varying two parameters essential
to the growth process: the substrate geometry and the deposition flux
of adatoms. Our first step is to evaluate the special case of how the
growth proceeds on flat and wedged surfaces.

The effect of substrate geometry is particularly important when
the nanocluster growth proceeds inside a supporting material e.g. a
biopolymer matrix. Experimental studies on the final (stationary)
state of Cu, Ni and Co nanoclusters, made inside a microcrystalline
cellulose matrix, have shown that the nanocluster formation seems to
be occurring at the pores and crevices on the cellulose fibres [4–6].
Unfortunately, the experimental examination of the actual process of
nanocluster nucleation and growth in situ has received far less
attention, mostly due to the fact that the available experimental
probes have limited spatial resolution, or on the other hand, limited
temporal resolution. At the advent of novel X-ray based probes using

either modern synchrotrons or X-ray free electron lasers (XFEL), the
spatial and temporal resolution for nanocluster growth studies is
practically in our reach. Therefore the modelling of nucleation and
growth theoretically and computationally have never been more
topical.

The theoretical studies on nanocluster growth havemostly focused
on semiconductor materials, especially in the cases involving self
assembly, self organization and size selection [7–9]. The size
uniformity of metal clusters is far less common, although some
examples have been reported along with theoretical studies explain-
ing the physical origin of such size selection [10–12]. The theoretical
explanation of size selection in metallic nanoclusters is only the first,
although very important, step in understanding the topic. A
satisfactory explanation must include energetic as well as kinetic
considerations, and the interplay between kinetics and energetics of
growth makes analytical predictions in most cases impossible. The
complexity of the problem requires a computational approach, and
the traditional solving methods include Molecular Dynamics (MD)
and Kinetic Monte Carlo (KMC) simulations. Although these methods
have been used with much success, there are some troublesome
limitations: the time scales and ensemble sizes required are well
beyond the capabilities of MD, and KMC is still an unfeasible method
for obtaining size distributions with good statistics. Therefore there is
a considerable interest tomodel size selection in themesoscopic level.

Thus, we describe the size selected growth of nanoclusters by
using reaction kinetic model (RKM) rate equations, where kinetics are
described by size dependent attachment and detachment rates, and
energetics are described through the free energy difference of the
clusters. The basic reaction kinetic equations and their justification
have been discussed in detail in our previous publications [13,14] and
are not reiterated here further. Here we concentrate on the question,
how it becomes possible to tune the size distribution and find the
optimum size distribution where the variance of sizes is at minimum
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i.e where size selection takes place with best perfection. This will not
happen at spontaneously selected metastable state, instead the
optimum size selection is expected only when finite flux is used to
drive the distribution in larger sizes with smaller variance of sizes
[15,16]. However, finding the optimum condition is computationally
demanding and simplified models are needed to approach the
problem. In effect, the present model describes how the optimum
stationary size and small size dispersion are reached, and what are the
properties of the stationary size distribution.

2. Theory

The basic physical assumptions behind the reaction kinetic model
(RKM) are steady diffusion, total mass conservation and that the
growing clusters are isolated dots in a dilute system. The model, the
rate equations governing the growth, and the numerical calculations
are discussed in detail in our previous studies [13,14] and references
therein. In brief, the cluster growth is described through adatom
attachment and detachment processes A1+As↔A1+ s with clusters
of size s. The reaction rates for attachment and detachment are σs and
γs, which are defined in terms of effective energy barriers Δs. The
reaction rates used in this study are based on the self-consistent rate
theory of Bales and Zangwill [17], with simplifying modifications
which preserve the basic physical behaviour (for details, see the
Appendix of Ref. [13]).

The kinetics of growth are taken into account in the reaction rates
with a geometric size dependence sq, i.e. the kinetics are simply
related to the length of cluster boundary. The parameter q is thus
related to themorphology of the growing clusters. Here we are mostly
concerned with 2D compact clusters, thus q=1/2 is an appropriate
choice.

The energetics of the model are defined through the total free
energy Es of the cluster of size s. The cluster growth is governed by
cluster surface energy and cluster edge energy [10,11,18]. The total
free energy is a sum of these contributions. The relevant quantity here
is the free energy difference Δs=Es+1−Es, which is proportional to
the chemical potential of the clusters. The details are based on the
model of dilute non-strained metal islands introduced by Feng Liu
[11], and when adapted to our problem leads to the free energy
difference with the form

Δs xð Þ = −x−1 log exð Þ + 2αe−
1
2x−

1
2; ð1Þ

where x is scaled size of the cluster s/s0 and s0 is the cluster size at the
energyminimum. In brief, the first term corresponds to cluster surface
edge energy and the second term corresponds to the surface energy of
the clusters. Parameter α is a measure of strength of the edge energy
to the surface energy and is of the order of unity. In addition, α is

proportional to the geometry of substrate surface through a geometric
factor which can be related to the opening angle of the wedge and to
the cluster to substrate contact angle [11,19]. Roughly, the decrease of
α to negative values corresponds to sharper wedge opening angles. On
the other hand, the increase of α to positive values can be though as an
upwards opening wedge i.e. the growth proceeds on top of a
triangular surface. In this study, however, the values of the α-
parameter are not directly related to any real system, mainly because
it would require knowledge about specific parameters such as the
surface energies of clusters and substrate, island-substrate interface
energies and contact angles. Hence the chemical potential of Eq. (1)
can be thought of as a generic result valid for large class of systems,
and comparison with real systems would require additional knowl-
edge of e.g. size minimum s0 and depth of the chemical potential,
which also are generally not known.

The time evolution of cluster size distribution in the RKM is
calculated using rate equations for the adatom density n1 and cluster
densities ns

dn1

dt
= ϕ−2σ1n

2
1−n1 ∑

s≥2
σsns + κγ2n2 + ∑

s≥2
κγsns; ð2Þ

dns

dt
= σs−1ns−1n1−σsnsn1 + κγs + 1ns + 1−κγsns; ð3Þ

where t is time, ϕ is the deposition flux of adatoms in monolayers
(ML) per second and parameter κ defines the ratio of total detachment
rate to the total attachment rate. These rate equations are based on
the standard kinetic equation in nucleation theory, also known as
Becker–Döring equations [20]. Similar equations have been used
widely in various nucleation and growth problems (for details see e.g.
the work of Zinsmeister [21] and the review by Kashchiev [22]).

The RKM rate equations, although perfectly valid for growth under
finite flux, are extremely difficult to solve for size distributions. In
addition, the numerical solution methods are bottlenecked by the
term governing the time evolution of adatom density. The bottleneck
is bypassed here with simplifications to the rate equations: the
adatom density is assumed stationary in time, and the direct merging
of two adatoms to form dimers is prevented. These assumptions lead
to an approximate form of the rate equations

dN1

dt
= 0 ð4Þ

dn2

dτ
≃− N1σ2 + γ2ð Þn2 + γ3n3 ð5Þ

dns

dτ
= σs−1ns−1N1−σsnsN1 + γs + 1ns + 1−γsns; ð6Þ

Fig. 1. The mean size of the stationary state, when α is zero (left). Solid dots are simulated stationary states. On the right side is the surface formed by varying the parameter α. The
scaling factor s0 is 2000. Error bars are smaller in magnitude than the size of the solid dots.
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