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Abstract

A novel InGaP/GaAs heterostructure-emitter bipolar transistor (HEBT) with InGaAs/GaAs superlattice-base structure is proposed

and demonstrated by two-dimensional analysis. As compared with the traditional HEBT, the studied superlattice-base device exhibits a

higher collector current, a higher current gain of 246, and a lower base–emitter (B–E) turn-on voltage of 0.966V at a current level of

1mA, attributed to the increased charge storage of minority carriers in the InGaAs/GaAs superlattice-base region by tunneling behavior.

The low turn-on voltage can reduce the operating voltage and collector–emitter offset voltage for low power consumption in circuit

applications.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

GaAs-based heterojunction bipolar transistors (HBTs)
have emerged to be one of the promising high-speed
devices because of their expected potential based on a high
current gain, a high current-handing capability, and an
extremely high-frequency performance [1]. Typically, a
relatively large base–emitter (B–E) turn-on voltage severely
limits the minimum operated voltage and causes a large
collector–emitter offset voltage (DVCE), which increases the
power consumption in circuit applications [2,3].

Over the past years, some approaches have been used to
reduce the B–E turn-on voltage. One approach is to adopt
a small energy-gap n-type emitter layer between confine-
ment and base layers for eliminating the spike barrier
blocking the electron injection from the emitter to the base
[4–6]. Nevertheless, if the small energy-gap emitter layer is
too thick, the transistor will perform with inferior
confinement effect. Then, the charge storage in the
neutral-emitter region enhances the base recombination

current and increases the total base current [6]. On the
other hand, if a thinner as well as small energy-gap emitter
layer is employed, the device will serve as a conventional
HBT and the turn-on is still considerably large. Another
approach is to use a low energy-gap material as base layer
[7–10]. Though InGaAs and GaAsSb ternary alloys have
lower energy gap to control and improve the turn-on
voltage, these introduce compressive strain and the layer
thickness is critical due to a lattice mismatch with GaAs
material. For the strain relation effects, the InGaAs
quantum-well-based heterojunction as phototransistor
has already been reported [11]. Furthermore, the use of
the InxGa1�xAs1�yNy as base layer was well demonstrated
to further reduce the energy gap in the base region and it
effectively improved the problem associated with excess
strain [9]. However, the blocking effect of collector current
at the base–collector heterojunction could introduce a large
knee voltage reducing the collector current.
In this article, a new InGaP/GaAs heterostructure-

emitter bipolar transistor (HEBT) with InGaAs/GaAs
superlattice-base structure is first reported and demon-
strated. The addition of a thinner as well as small energy-
gap emitter layer eliminates the potential spike at B–E
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junction, and the average energy gap in the base region is
decreased by the use of the superlattice-base structure. As
compared with the traditional HEBT, the minority charge
storage in the superlattice-base region is enhanced and the
collector current is substantially increased.

2. Device structures

The device structure of the superlattice-base device
(labeled device A) includes a 0.5 mm n+ ¼ 1� 1019 cm�3

GaAs subcollector layer, a 0.5 mm n� ¼ 5� 1016 cm�3

GaAs collector layer, a p+ ¼ 5� 1018 cm�3 InGaAs/GaAs
superlattice base, a 300 Å n ¼ 5� 1017 cm�3GaAs emitter
layer, a 0.1 mm n ¼ 5� 1017 cm�3 In0.49Ga0.51P confine-
ment layer, and a 0.3 mm n+ ¼ 1� 1019 cm�3 GaAs cap
layer. The superlattice base consists of ten-period 50 Å
In0.2Ga0.8As layers and nine-period 50 Å GaAs layers. The
conventional InGaP/GaAs HEBT (labeled device B) has a
structure similar to device A, except that a 950 Å
p+ ¼ 5� 1018 cm�3 GaAs bulk base layer is employed to
replace the superlattice base. A two-dimensional (2D)
semiconductor simulation package SILVACO was used to
analyze the energy band, distributions of electrons and
holes, and dc performances of the two devices [12]. The 2D
analysis takes into account the Poisson equation, con-
tinuity equation of electrons and holes, Shockley–Read–
Hall (SRH) recombination, Auger recombination, and
Boltzmann statistics, simultaneously. The emitter and
collector areas are 50� 50 and 100� 100 mm2, respectively.

3. Results and discussion

The energy band diagrams near the B–E junction for
devices A and B are illustrated in Figs. 1(a) and (b),
respectively. Obviously, the potential spikes at the B–E
junction of both devices are completely eliminated, even at
VEB ¼ 1.0V. The employment of a thin n-GaAs emitter
layer between confinement and base layers enables the pn
junction to act as a homojunction and helps to lower the
energy band at the emitter side for eliminating the potential
spike.
Fig. 2 shows the simulated common-emitter current–

voltage (I–V) characteristics of the two devices at room
temperature. Clearly, device A exhibits a higher collector
current and a larger current gain than device B. An
enlarged view near the origin of the I–V characteristics is
depicted in Fig. 2(b). As seen in the figure, a relatively
lower offset voltage of 16mV at IB ¼ 50 mA is observed for
device A, while device B shows a larger value of about
40mV. Fig. 3 depicts the calculated Gummel plots of the
two devices at VBC ¼ 0V. The E–B turn-on voltage of
device A is 0.966V at the current level of 1 mA, which is
40mV lower than the 1.006V in the traditional HEBT. The
low E–B turn-on voltage can reduce the operating voltage
and collector–emitter offset voltage for substantially
decreasing the power consumption in circuit applications.
The current gains are 246 and 70 at VBE ¼ 1.25V for
devices A and B, respectively. In both devices, the ideality
factor nc for collector current is nearly equal to unity at low
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Fig. 1. Energy band diagrams near the base–emitter junction of (a) device A and (b) device B. Devices A and B represent the heterostructure-emitter

bipolar transistors with and without the superlattice-base structures, respectively.
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