
Stability of vicinal surfaces and role of the surface stress

Pascal Hecquet
CEA, INAC, SP2M, NRS, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France

a r t i c l e i n f o

Article history:
Received 13 November 2009
Accepted for publication 9 February 2010
Available online 1 March 2010

Keywords:
Semi-empirical models and model
calculations
Stepped single crystals surfaces
Surface energy
Surface stress
Surface tension
Shuttleworth’s equation
Copper
Gold

a b s t r a c t

Vicinal surfaces of type (0,1,M) are investigated and compared with surfaces with opposite steps, M being
an integer larger than 2. When admitting that the step behaves as a dipole force ~f ¼ ð0; fy; fzÞ; f y and fz

being respectively parallel and normal to the surface, the Marchenko–Parshin (MP) model gives the sur-
face displacement due to one step equal to�K~f=y; K being an elastic constant and y the position from the
step. On vicinals, the MP model indicates that the interaction energy between steps varies as K~f 2=L2, L
being the step–step distance. For Cu(0,1,M) and Au(0,1,M), the components fy and fz are deduced from
surface displacements obtained by molecular dynamics at T = 0 K. Due to the minimization of the terrace
stress, we confirm that the terrace is more contracted in the direction parallel to the surface by a factor
ð1þ XÞ > 1 with respect to the MP model where X is recursively proportional to the parallel deformation.
This leads to an interstep interaction energy increased by a factor ð1þ 2XÞ2 (instead of ð1þ XÞ2 with
respect to both the terrace deformation and the MP model). This effect due to the terrace stress is larger
for Au. We note that fyð1þ XÞ is close to fz, opposite in sign to the surface stress of the nominal surface
and to the isolated step stress. By comparison with surfaces with opposite steps, the parallel deformation
at the step position, �yyð0Þ, includes a term in L�1 in addition to the term in L�2 deduced from the MP
model. The term in L�1 corresponds to a weak displacement parallel to the surface towards the descend-
ing steps. From the step energy, the first order and second order energies as function of the relaxation
deformations can be subtracted. In the MP model, the first order one is opposite in sign and twice in mag-
nitude the second order one. For Au, we observe a deviation from this equality due to the minimization of
the terrace stress.

In the last part and for vicinals, we confirm that the step–step interaction stress varies as L�1 and results
from the component fz multiplied by minus the derivative of the normal displacement due to neighbour-
ing lines of monopole forces, the forces being parallel to the surface and proportional to the homogeneous
deformation.

In the literature, it is known that the stability of vicinal surfaces results essentially from the repulsive
interstep interaction energy. Concerning the surface stress, the isolated step stress attenuates the surface
stress of the nominal surface. Because the interaction stress decreases this attenuation, we note that the
steps are repulsive also by the surface stress.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

For last decades, the literature on surface physics shows that
the surface stress has attracted an unceasingly increasing interest
for understanding the equilibrium of surfaces [1]. Surface stress
is an important concept but it is not quite understood for surface
scientists. Often, surface stress is wrongly confused with surface
energy. To consider only the minimization of surface energy cannot
be sufficient in explaining the equilibrium structure of defects on
surfaces. For a flat surface, the surface stress is an excess pressure
with respect to the bulk pressure for a given temperature. When
the bulk pressure is negligible, as is often the case, surface pressure
can be important to play a role in the equilibrium of surface nano-

structures. Moreover, when the number of surface atoms becomes
not negligible with respect to the number of bulk atoms as for
nano-objects, the surface stress can modify the equilibrium struc-
ture of the small systems with respect to larger systems [2]. Thus,
surface stress will be more taken into consideration in nanotech-
nology. Otherwise, the surface stress is often used in explaining
the anisotropy of the surface equilibrium structures. Because sur-
face stress is much sensitive to surface relaxation than surface en-
ergy, the surface stress anisotropy is more important than the
surface energy anisotropy [3,4].

This paper concerns the equilibrium of stepped surfaces and fol-
lows in depth previous Refs. [5,6]. In those references, the surface
stress has been mentioned in explaining the equilibrium of sur-
faces. But up to now, the role of the surface stress is still contested.
On vicinal surfaces, the steps behave as lines of force dipoles and
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are in interaction together. The stability of vicinal surfaces is due
essentially to the repulsive interaction energy between steps. From
the Marchenko–Parshin (MP) model, it decreases in L�2 where L is
the periodic distance between steps. This interaction energy re-
sults from the second order energy as a function of the deforma-
tions, E2o, when supposing that the first order energy E1o is equal
to �2E2o. However, we shall see that the energy E1o includes an
interaction energy in L�1 and the energy E1o is quantitatively quasi
equal to �2E2o for equilibrium reasons between E1o and E2o. In
addition to the interstep repulsion in energy, we shall show that
the steps are also repulsive by the surface stress due to the exis-
tence of an interaction stress which is positive and varies as L�1 [7].

From Ref. [6], we recall that the displacement on the flat surface
due to one dipole line varies recursively in the direction of the sur-
face plane y as fy½1� kfyð1� kfyð� � �ÞÞ�=y ¼ fy½1� kfy=ð1þ kfyÞ�=y ¼ fy

½1þ X�=y where y is the position from the dipole line, fy is the com-
ponent y of the dipole force and k is an elastic constant. Moreover,
we note that the part due to fy of the interaction energy between

dipole lines varies as f 2
y ð1þ 2XÞ2=L2 (instead of f 2

y ð1þ XÞ2=L2). This
deviation has been demonstrated as resulting from the minimiza-
tion of the surface stress (in absolute value) of the terrace between
dipole lines even if the total energy of the system increases [6]. The

deviation from f 2
y =L2
h i

(MP model) to f 2
y ð1þ 2XÞ2=L2
h i

will be ap-

plied with success to the vicinals Cu(0,1,M) and Au(0,1,M). The
two metals Au and Cu are chosen due to the large difference be-
tween their elastic constant k ðkAu ’ 3kCuÞ. We work with vicinal
surfaces because they are simple models for which the defects
are linear in the direction x. Thus the atoms are displaced in only
the two directions y and z. For vicinals of type (0,1,M), the dis-
tances in the directions y and z between nearest bulk atoms are
equal and so the problems due to the anisotropy of the fcc metals
are avoided at best (x, y and z are the directions of the fcc conven-
tional unit cell). This clarifies our understanding of equilibrium of
surfaces when calculating the total surface energy and the first or-
der and second order energies as a function of the deformations
due to steps. The role of the surface stress on vicinals shall be
investigated into details.

We study surfaces with steps due to the emergency of nano-
technology today. Stepped surfaces can be chosen as templates
for realizing an ordered ensemble of nanoparticles [8] or long-
range-ordered structures at the nanometer scale [9]. Vicinal sur-
faces require thus to be still studied in depth. Reconstruction and
faceting observed on vicinal surfaces remain still a high subject
of discussions because they are not entirely elucidated [10,11].
Interesting transition between step bunching and step-meandering
has been observed in experiment on Si(111) vicinal surfaces [12].
Intensive studies on Si vicinals and their stability are been recently
published [13–16]. Vicinal surfaces are also studied by investigat-
ing metal electrodes in contact with an electrolyte [17–20]. On
Cu(2,2,3), Pt(7,7,9) and Pt(15,15,16), Surface X-ray diffraction
measurements of Crystal Truncation Rods are compared with Fou-
rier transform of results obtained in the frame of anisotropic linear
elasticity [21–23]. For this, the authors B. Croset and G. Prévot sup-
pose that the dipole force which simulates the step is applied upon
the flat surface only for the upper corner of the step, the force ap-
plied upon the lower corner of the step is located under the flat
surface (buried dipole model). So, they showed that the elastic dis-
placements are highly anisotropic and the direction of both the
force and lever arm play a major role for the interstep interaction
energy. Those authors do not account for the role of the surface
stress in the modification on this energy with respect to the MP
model.

The paper is organized as follows: Section 2 gives the choice of
the potential used in our simulations. Section 3 details the defini-

tions of surface energy and surface stress by revisiting the Shut-
tleworth’s equation. In Section 4, we show that we can
calculate the step energy on vicinal surfaces by two methods,
on the one hand by summing the interatomic potentials and on
the other hand by using the deformations with respect to the flat
surface and the appropriate elastic constants (first order and sec-
ond order energies). In this section, we recall the MP model often
used for giving the surface displacement due to steps. The MP
model gives a first expression of the step–step interaction energy.
The MP model supposes that the surface stress is constant with
the deformation. In addition, Section 4 gives the modifications
of this model due to the (variation) of the surface stress. Section
5 is devoted to the study of surfaces with opposite steps (OSt sur-
faces) and of vicinal surfaces (SSt surfaces). This permits us to
determine the differences between the two types of surfaces in
order to study at best SSt surfaces. In this section, surface dis-
placements and deformations at the step position are investi-
gated. In Section 6, we discuss the step energies and compare
them with the first and second order energies as a function of
the deformations. Surface stress of vicinal surfaces is showed at
the end of this section before discussion. Section 7 is devoted to
vicinal surfaces with homogeneous deformation in order to ex-
plain the step–step interaction stress which decreases as L�1. Fi-
nally, we summarize and conclude in Section 8.

2. Interatomic potential

Our simulations use the RGL potential which is a many-body
potential [24]. The potential has been adjusted to the experimental
bulk elastic constants and cohesive energy. The lattice constant is
equal to the experimental one. For a given system of N atoms,
the total energy of the system is the sum of N energies Ui; Ui being
the energy of the atom i. Each atomic energy is calculated by sum-
ming the interaction energies between the atom i and its neigh-
bouring atoms j – i. In order to follow the results obtained in
previous papers [5,6], the interactions between atoms i and j are
limited to nearest neighbours. For this cut-off radius, the parame-
ters of the RGL potential are given in Ref. [24]. This limitation sim-
plifies our calculations by using the derivatives of the atomic
potential Ui with respect to the deformations between two equilib-
rium configurations. All the results are obtained at T ¼ 0 K by using
a quenched molecular dynamics [25,26]. To study the energetics of
surfaces, (001) surfaces and vicinal surfaces with (001) terraces,
our simulations are computed by using a slab with two free sur-
faces separated by 200 (001) planes. This is sufficient to ensure
the correct reproduction of the bulk properties of the central region
between surfaces. We consider thus that the two surfaces do not
interact between themselves.

3. Do not confuse surface energy c0 and surface stress r0
ab

3.1. Surface energy c0

In order to explain at best the difference between surface en-
ergy and surface stress, we take simply a ð001Þ flat surface for
which the directions x, y and z are the equivalent directions of
the fcc conventional unit cell (see Fig. 1). The direction z is normal
to the surface. This figure displays the length unit = a used in the
paper. The lattice constant is equal to 2a and the surface area occu-
pied by one atom is Aa ¼ 2a2. The monolayers parallel to the sur-
face are the planes labelled from p ¼ 1 for the surface monolayer
up to the plane p ¼ Np for the bulk. Np is sufficiently large in order
to validate that the Nth

p plane behaves as in bulk. The surface energy
is defined as the excess energy per unit surface area with respect to
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