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a b s t r a c t

The stability of an elastically strained thin film is investigated within the context of small and large per-
turbation theories for the case of an anisotropic surface energy which is a function of the film thickness
and the surface orientation. Under typical growth conditions (below the roughening transition tempera-
ture) the surface energy function has a sharp (cusped) minima at low energy orientations, i.e. the deriv-
ative of the surface energy with respect to orientation is discontinuous. This sharp cusp in the surface
energy function is treated explicity here without the normal smoothing assumptions. It is found that
the smoothed approximation is unphysical in the sharp cusp limit as it predicts that the film is always
stable. It is shown here that full treatment of the cusp disagrees with this finding and predicts that min-
imum energy surfaces are in fact unstable for perturbations above a critical size. A simple linear model for
this critical perturbation size is proposed. Off-lattice kinetic Monte Carlo (kMC) simulations are con-
ducted to test these predictions and good agreement is found. It is demonstrated that roughening in
highly strained heteroepitaxial systems is possibly beyond the scope of linear perturbation theory,
depending on the exact nature of the surface energy function. A non-linear theory for large perturbations
is proposed to this effect. It is also found that the wetting layer in InAs/GaAs(001) and Ge/Si(001) is
effectively stable whilst the surface energy of the wetting layer varies with its thickness.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Heteroepitaxial semiconductor thin films are used in the fabri-
cation of microelectronic and optoelectronic devices. The elastic
strain energy inherent in the film due to the lattice mismatch be-
tween it and the substrate causes the film to become unstable as
the film gets thicker. This can cause the film to break up and grow
as a number of discrete entities referred to as islands or quantum
dots. This Stranski-Krastanov transition is of great interest as it of-
fers the possibility of manufacturing practical self-organised nano-
structures [1]. Technological application of this process requires
control of this strain-induced morphological change. The roughen-
ing of a strained surface has been widely investigated using the
Asaro–Tiller–Grinfeld (ATG) instability theory [2–4]. This shows
that the initially flat surface of a strained film is always unstable
for an isotropic (constant) surface energy. Reduction in the elastic
stored energy of the thin film drives the roughening towards the
shortest possible wavelength. The surface energy, meanwhile,
wishes to flatten the perturbed surface and drive the system to
the longest possible wavelength. This competition between the
elastic stored energy and surface energy drives the system towards

a particular roughening wavelength. This is critical for the develop-
ment of self-organised structures with a narrow-size distribution.

Heteroepitaxial growth typically occurs below the roughening
transition temperature. This means that the anisotropic nature of
the surface is very important in determining the stability of the
system [6,7]. In this paper, the effect of a surface energy which is
a function of the film thickness and surface orientation is consid-
ered. It is widely known that the surface energy of a crystal is
highly dependent on the surface orientation [8]. Below the rough-
ening temperature, it is commonly found that surfaces facet at par-
ticular orientations which are local minima in the surface energy.
At these orientations there is a discontinuity in the derivative of
the surface energy. This is referred to as a (functional) cusp. An
example of such a cusped function can be seen in Fig. 1, where
the cusp is at a surface orientation of h = 0. ATG theory predicts
that the cusp makes such films unconditionally stable against
small perturbations [7]. However, Eisenberg and Kandel [7] found
in their numerical simulations of strained thin films that such films
were unstable to perturbations of a critical size. The origin of this
critical perturbation amplitude is considered further in this paper
and, for the first time, a simple analytical expression for its magni-
tude is derived.

For very thin films less than 4–5 monolayers in thickness, it has
been shown that the surface energy is also a function of the film
thickness [9]. This fact has been used to explain experimental
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observations of a critical wetting layer thickness, below which the
wetting layer is stable [10]. Recent ab-initio calculations have
determined this thickness dependence for a number of important
systems [11]. The effect of the critical wetting layer thickness is
re-evaluated here in the context of this critical perturbation ampli-
tude theory.

A general variational functional is proposed in Section 2 for the
analysis of elastically strained anisotropic surfaces in which the
surface energy is a cusped function of the surface orientation and
a smooth function of the film thickness. A variational method is
used to formulate a novel small perturbation continuum theory
for the stability of such surfaces in Section 3. Off-lattice kinetic
Monte Carlo (kMC) simulations are performed to determine the ef-
fect of strain on the roughening wavelength in strained films.
These results are then compared with the predictions of the linear
continuum theory. This theory is then extended to consider non-
linear large perturbations in Section 4.

2. The variational functional

Consider a two-dimensional thin film on an infinitely thick sub-
strate with similar elastic properties, as shown in Fig. 2. We take
the film-substrate interface to coincide with the x-axis and let

the thickness of the film be defined by h(x,t). The problem now re-
duces to predicting how h evolves over time due to diffusion of
atoms over the free surface. The mismatch strain between the film
and substrate is taken to be e0 and plane strain conditions are
assumed.

The details of the problem are now elaborated within the con-
text of a variational framework [12]. This has the advantage that
the exact evolutionary morphology of the system does not need
to be known. A class of morphologies is proposed. If the system
evolves within this class of morphologies then the exact solution
to the differential equations is obtained. If it is not, then the best
approximation to the exact result within the constraints of this
class is obtained. We propose here that the surface morphology
evolves as a series of sinusoids. For a surface energy which is a
smooth function of orientation, c(h), ATG theory shows that this
is the exact morphology class for small amplitude perturbations.

In general, we formulate a variational functional

P ¼ Wþ _G ð1Þ

such that the actual kinematic field describing the evolution is the
minimal one, i.e. dP = 0. The kinetics of the surface diffusion process
are encapsulated within the dissipation potential, W. The rate of
change of Gibbs free energy, _G, provides the driving force for evolu-
tion of the system. This analysis is for a two-dimensional system
but it is readily extended to three-dimensions [13]. Assuming the
surface diffusivity is isotropic [13], the dissipation potential can
be written as

W ¼ 1
2

Z
As

j2
s

Ds
dx ð2Þ

where js is the volumetric surface flux, As is the (one-dimensional)
area of the free surface of the film, and Ds is the surface diffusivity.
The surface flux is related to the normal velocity of the surface mn by

mn þ
ojs

os
¼ 0 ð3Þ

where s is a surface ordinate.
The Gibbs free energy has two contributions

G ¼
Z

As

cðh; hÞdxþ
Z

V
wdV : ð4Þ

The first term is the total surface energy in which the anisotropic
surface energy density c is a function of the surface orientation, h,
and the film thickness, h. The second term is the total elastic stored
energy of the system, where w(x, y) is the local elastic strain energy
density and V is the (two-dimensional) volume of the film-substrate
assembly. Consequently one can write [10]

_G ¼
Z

As

cðh;hÞjþwð Þmn þ
oc
oh

_hþ oc
oh

_h
� �

dA ð5Þ

where j is the local curvature of the film surface and the dot de-
notes differentiation with respect to time. The variational functional
(1) is now completely defined for a particular class of surface height
profiles, h(x, t). In the next section, this is used to determine the sta-
bility of this system to small perturbations.

3. Linear stability analysis

To obtain a linear solution to this problem we restrict the spa-
tial gradients in the surface profile to be small so that the ampli-
tude of the perturbation is assumed to be much less than its
wavelength. In this case, the mass conservation relation (3) is

mn �
dh
dt
¼ � ojs

ox
ð6Þ
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Fig. 1. The surface orientation-dependence of surface energy functions (25) and
(26). Visually it appears that the smooth energy function (26) tends towards the
cusped function (24) as the rounded cusp radius a get large. However mathemat-
ically this is not the case in the limit of small perturbation theory and the two
functions give very different predictions for the stability of a surface in the limit
a ?1.
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Fig. 2. The lattice mismatch between the thin film and the substrate is e0. The
height of the surface of the film, h(x,t), is assumed to be sinusoidal with wavelength,
k, and peak-to-peak amplitude, 2A(t). The surface energy, c(h, h), is assumed to be
an anisotropic function of the surface height and orientation, h.
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