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Abstract

In absence of any external field, the equilibrium profile z(x) of a vicinal rounded part tangentially joined to a flat facet is known to
follow a universal scaling law z(x) / x3/2. This universal behaviour is modified when the crystal is plunged in an external field. The devi-
ation from the universal Gruber–Mullins–Pokrovsky–Talapov behaviour depends on the facet orientation, the chemical potential of the
crystal and the external field. We show that measuring this deviation is enough to provide absolute value of the step–step interaction.
Applications to gravitation and centrifugation fields are discussed.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The equilibrium shape of faceted crystals puzzled phys-
icists for a long time. A first step towards an explanation of
equilibrium crystal shapes has been done by Curie [1] then
Wulff [2] who have shown that the equilibrium shape of a
free crystal is the shape that minimises its total surface free
energy under the constraint of constant volume. In the
ground state (T = 0) theoretical crystal shapes are com-
posed of facets separated by sharp edges whereas increas-
ing the temperature the facets shrink in size and become
connected by rounded parts. The local profile of the curved
region near a singular facet depends on the exact analytical
form of the surface energy of the vicinal surface connected
to the singular facet [3,4]. More precisely a vicinal rounded
part tangentially joined to a flat facet can be described by a

local scaling law z(x) = axn. The exponent n = 3/2 has been
shown to be universal within a large class of models
describing crystal surfaces, it is called the Gruber–Mul-
lins–Pokrovsky–Talapov (GMPT) exponent [5,6]. Since
the local equilibrium shape can be described as an equilib-
rium of steps, the coefficient a depends on two quantities:
the step–step interaction and the chemical potential of
the crystal.

In 1988, Avron et al. [7] showed, using a 2D model, that
gravity transmutes the GMPT exponent from 3/2 to 3
when moving away from the singular surface. Avron
et al. [7] essentially studied the crossover between the x3/2

profile close to the facet and the x3 profile far from the fa-
cet but did not give the complete analytical expression of
the profile z(x) in presence of gravity. In this short paper
we intend to obtain an exact expression of the local profile
of a crystal plunged in a given external field that may be
uniform or not. We will show that as soon as a crystal is
plunged in an external field, the GMPT exponent n = 3/2
is no more valid [7]. Moreover the deviation we find pro-
vides the opportunity to extract independently the step–
step interaction and the chemical potential.
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The paper is organised in three parts. The first section,
devoted to the description of the local equilibrium shape
in presence of an external field, completes the work of Av-
ron et al. [7]. The second part concerns the use of an exter-
nal field as a tool for measuring absolute values of the step–
step interaction. Lastly in a short conclusion we discuss the
main limitations of the method.

2. Equilibrium shape in presence of an external field

2.1. General considerations: Euler–Lagrange equation in

presence of an external field

In a field-free environment, the equilibrium shape of a
body is the shape that minimises its surface free energyR

S cð~nÞdS at constant volume where cð~nÞ is the anisotropic
surface free energy, ~n a unit vector normal to the surface
S of the crystal and dS a surface element [1,2]. It results
the Wulff theorem, which states that the equilibrium shape
is the pedal of the surface free energy cð~nÞ [2].

For a crystal plunged in an external field, the equilib-
rium shape is the one that minimises the total free energy
(for a discussion see [7,8])Z

S
cð~nÞdS þ

Z
V

Uð~rÞdV at constant volume V ð1Þ

Now the total energy contains Uð~rÞ the external field poten-
tial energy density. Obviously dV is a volume element.

For the sake of simplicity, we will only consider a two-
dimensional (2D) case where the equilibrium shape is an

equilibrium contour. The geometrical configuration we will
use is reported in Fig. 1: a crystal deposited on a foreign
(but pseudomorphic or structureless) substrate1 with a fa-
cet tangentially joined to a rounded part. We will note
(Oxz) the local referential associated to a facet edge and
(O 0XZ) the laboratory referential.

For a rounded part, the surface energy is a continuous
function of the local slope p = ±dz/dx so that the integral
(1) to be minimised reads:Z

Gðx; z;pÞdx¼
Z
½cðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
� kzþ

Z
Uðx; 1Þd1þ cAB�dx

ð2Þ

The quantity bðpÞ ¼ cðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
in Eq. (2) is the so-called

‘‘projected energy’’, k is a Lagrange multiplier (in fact the
chemical potential change [10]) introduced because of the
constraint of constant volume (here area,

R
zðxÞdx),R

Uðx; 1Þd1 is the potential energy density of the external
field integrated on the z axis and cAB is the interfacial free
energy.

The starting point for an analytic description of the local
shape is the analytical expression of the orientation depen-
dence of the surface free energy. For this purpose, using the
Terrace-Ledge model [11], the ‘‘projected energy’’ is gener-
ally written:

bðpÞ ¼ b0 þ b1jpj þ b3jpj
3 ð3Þ

where b0 is the surface free energy density of the flat ter-
races, b1 the free energy density of an isolated step, b3

the step–step interaction energy density2 due to entropy,
elastic or electrostatic repulsion (for a review see [12])
and p the local slope in the local referential z(x) (see Fig. 1).

The function G(x,z,p), which minimises (2) is solution of
the Euler–Lagrange equation [13]:

oG
oz
� d

dx
oG
op
¼ 0 ð4Þ

Using the expression of G(x,z,p) given in (2) with Eq. (3),
the Euler–Lagrange equation reads:

o2z
ox2

o2b
op2
¼ �kþ Uðx; zÞ ð5Þ

Introducing the local polar angle h of the rounded part in
the Z(X) referential (see Fig. 1) as a new variable, Eq. (5)
can also be written:

~c=R ¼ �k0 ð50 Þ

where R is the local radius of curvature of the profile (see
Fig. 1). The quantity ~c ¼ cþ o

2c=oh2 defines the so-called
surface stiffness and k 0 = k-U(x,z) is a generalized chemical
potential that contains the external field potential energy
density U(x,z) as a correction to the usual chemical
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Fig. 1. Scheme of the 2D crystal under consideration. (O 0XZ) and (Oxz),
respectively, are the laboratory referential and the referential attached, to
the facet edge (z is normal to the facet and makes an angle a with respect
to (O 0Z)). h is the polar angular coordinate of the profile. � ~rU is the
external field applied to the crystal. R is the local radius of curvature of the
crystal and L is the characteristic size of the crystal. In case of crystal
rotation x is the angular velocity.

1 For non-pseudomorphic crystalline substrate, bulk and surface elas-
ticity intervene (see for example [9]).

2 Notice that in this model there is no p2 term in the development of b(p).
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