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Abstract

A discussion is presented on some physics behind the unusually long ranged dispersion forces recently predicted between one-dimen-
sional and nanolayered structures with a zero electronic energy gap, such as metallic nanotubes and graphitic structures. The various
results for these systems, previously obtained via a variety of formalisms, are here re-derived systematically from a single approach.

© 2007 Elsevier B.V. All rights reserved.

Keywords: van der Waals; Dispersion force; Nanotube; Nanostructure; Coupled plasmons; Graphene; Low dimensional

1. Introduction

Soft dispersion forces, part of the van der Waals (vdW)
interaction, are frequently important in the cohesion of lay-
ered and nanostructured systems. For example, vdW forces
are generally considered to be involved in the binding of
graphene layers to form graphite and its intercalates. Sim-
ilarly vdW forces cause carbon nanotubes to clump into
bundles.

Dispersion forces have been studied for over a century
[1,2]. For the interaction between small systems such as
atoms at separations R much greater than a conventional
bond length, very simple models involving an R™° interac-
tion energy (see e.g. [1,3]) are satisfactory in the electro-
magnetically non-retarded regime. It has been popular to
model larger systems using a sum of such R~ ® pair forces
[1,4]. Since the 1950s one has also had access to more de-
tailed theories for larger systems, such as approaches aris-
ing from stochastic electrodynamics [5] or perturbative
quantum electrodynamics [6], or the surface plasmon ap-
proach [1]. In almost all applications the spatially nonlocal
polarizability or dielectric function appearing in these the-
ories had been approximated by a spatially local form. This
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approximation led ultimately to power-law exponents for
the non-retarded energy versus separation curves (E vs
D) for extended parallel structures that were the same as
from an elementary sum of atom—atom R °® contributions
(see column 3 of Table 1). However, until very recently
these approaches had not been applied in detail to large
systems with a zero electronic energy gap plus one or more
spatial dimensions in the nanometer range. Thus, it seems
to have been widely unnoticed that the usual spatially local
approximations for the dielectric function fail for these ex-
tremely anisotropic cases. The reasons for this include the
ability of electrons to form long-wavelength density fluctu-
ations, plus the lack of strong three-dimensional Coulomb
screening [7], a lack attributable to the presence of at least
one nanoscale spatial dimension. As a result, zero-energy-
gapped systems having, simultaneously, at least one macro-
scopic spatial dimension and at least one nanoscopic
dimension should give unusual slowly decaying van der
Waals power laws (see column 2 of Table 1). This was re-
cently exposed as a general phenomenon [7], after the ear-
lier work had uncovered one special case, that of two
parallel two-dimensional electron gases [8].

In the following Sections we will discuss the reasons for
these results, and in particular why some of them are so dif-
ferent from the predictions of a sum of R~® energy contri-
butions from atom (or bond) pairs. Further investigation
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Table 1
Asymptotic dispersion energy of parallel structures vs. separation D
System Present Standard
prediction® prediction
1D metals [7] —D*(In(KD)) > -D°°
1D nonmetals [7] -D7° -D°°
2D metals [8,3,7] -D%? -D*
n-conjugated layers [7] D 3at T=0K) -D*
1 metallic, 1 n-layer [7] —D3In(D/Dy) -D*
2D insulators [7,24] -D* -Dp™
Two thick metals or insulators -D2 -D?
(3.7]

* K and D, are constants.

of these asymptotic results is timely because (i) the small
forces discussed here should be readily observed, in their
asymptotic region of validity, via sensitive force micros-
copy and nanomechanical resonant techniques [11] that
have been demonstrated recently and (ii) individual graph-
ene layers have recently been obtained experimentally [9],
with a good enough purity to see the quantum Hall effect
[10].

2. Formalisms for vdW energies

At a microscopic level, the dispersion interaction arises
from the Coulomb-induced correlations between the spon-
taneous electron density fluctuations on two or more sys-
tems (see e.g. [3]). It can be understood qualitatively and
quantitatively in a number of ways.

2.1. Perturbation in the inter-system Coulomb potential,
useful in the non-overlapping regime

In order to study the distant part of the vdW interaction,
we will focus first on a form of perturbation theory that is
able to give at least qualitatively correct results for all the
cases of interest in the present paper.

Consider the perturbation theory with respect to the
interaction w;, between two separated electronic subsys-
tems (wq, is assumed to be the non-retarded Coulomb
interaction). The dispersion energy arises at the second-
order level of perturbation, giving in the first instance a
typical expression involving Coulomb matrix elements
between many-electron wavefunctions, divided by an energy
denominator. Of the many different ways to re-express this
result we exhibit one here, due to Longuet-Higgins and
others, [12,13] which will be particularly useful for present
purposes:
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Here y,(7,7,iu) is the linear density—density response
function of electronic system #1 in the absence of system

#2, and similarly for y,. In general y(7, 7, o = iu) exp(ut)
is defined to be the linear density perturbation at 7 induced
by a perturbation to the electrons’ external potential energy
function of the form V' (r, 1) = 6 (F — #') exp(ut). Eq. (1)
is meaningful only when the electronic charge clouds of
the two subsystems can be considered as non-overlapping,
so that electrons belonging to the two subsystems can be
considered as distinguishable. Then, for example, Pauli ex-
change effects due to overlap can be ignored. With this pro-
viso, (1) includes in principle the effects of Coulomb
interactions within each subsystem to all orders, via the ex-
act density—density responses y, y» of the isolated systems:
only the Coulomb interaction between the subsystems is
treated perturbatively. Of course y; and y, have to be
approximated in practice. For the qualitative purposes of
the present paper, the random phase approximation
(RPA, time-dependent Hartree approximation) will be used.

2.2. Moeller—Plesset (MP) perturbation theory

This form of perturbation theory [14] starts with a Har-
tree—Fock description of the coupled system, then treats all
electron—electron Coulomb interactions beyond this in sec-
ond-order perturbation theory. The second-order energy
thus includes both terms that relate to Coulomb interac-
tions inside a subsystem, and terms that describe Coulomb
interactions between the subsystems. Only the latter form
part of the dispersion energy. Because two orders of
perturbation theory are already used up in creating a dis-
persion term of order w?,, the dynamics due to Coulomb
interactions wy, Wy are left out of the Moeller—Plesset sec-
ond-order dispersion interaction EMF%. As a result, for
non-overlapping systems MP2 theory is equivalent to (1)
except that only the bare (independent-electron) responses
xﬁo), x§°> of the subsystems appear, in contrast to the fully
interacting ones y, y». This can be a serious error for some
systems (e.g. a Be atom, or a 2D electron gas) where the
bare and interacting responses are significantly different.
Going to a higher-order in the Moeller—Plesset perturba-
tion scheme (e.g. MP4) can improve matters, particularly
for small systems, but this is neither adequate nor numeri-
cally tractable for the large metallic and near-metallic sys-
tems that we will be studying here. On the other hand, MPx
treats exchange properly and remains valid as systems are
brought together into the charge-overlapped regime where
(1) is not valid.

2.3. Symmetry-adapted perturbation theory

This is a hybrid method that allows one to focus on the
inter-system Coulomb interaction wy, as in Section 2.1, but
projects out terms that violate exchange symmetry, thus
permitting overlapped systems to be studied [15]. This
method is currently having good success for small vdW-
interacting systems but is not currently tractable for the
systems of interest here, which have at least one macro-
scopic dimension.
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