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Abstract

One-electron spin-dependent scattering problem is considered on the star-shaped 2-d quantum network consisting of a quantum well
and few relatively thin leads attached to it. The resonance nature of transmission coefficients is revealed based on accurate analysis of
interaction between the running spin-waves in the leads and the standing spin-waves in the quantum well. Modeling of the transport
problem on the two-dimensional junction by the 1-d scattering problem on the corresponding quantum graph is discussed.
� 2006 Elsevier B.V. All rights reserved.
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1. Transport in networks as a scattering problem

Spin-dependent transport problem for a single electron
with an effective mass m* is studied on a star-shaped quan-
tum network – a junction X [ x – constructed on a surface
of a semi-conductor of a vertex domain X (a quantum well
of an arbitrary shape), and a few straight semi-infinite leads
x ¼ [M

m¼1x
m (quantum wires, of a constant width d) at-

tached to X at the bottom sections C ¼ [M
m¼1c

m. In strong
normal electric field the dynamic of the electron on the net-
work is described by the Schrödinger equation which is
transformed, after separation of time and scaling of energy
E! k = 2m*E�h�2, to the spectral problem for the Schrö-
dinger operator

Lw ¼ �4 wþ HRwþ V dw ¼ kw;

for 2-spinor w, with the spin–orbital interaction defined the
symmetrized Rashba term

HR ¼ aðxÞ½r; p� þ ½r; p�aðxÞ; p ¼ ir;

containing the Rashba – factor a, see [1], defined by the mag-
nitude of the normal component of electric field and vanish-
ing near the boundary oX and on the wires. We assume that
the temperature is low and the Fermi level K = 2 m*EF�h�2

lies deep enough to assume that w vanishes on the boundary
of the network. The electrostatic potential Vd is constant on
the wires, and magnetic field is absent. We consider also the
Schrödinger equation Lw = kw, on the quantum well X with
L defined by the same potential and Rashba term as L. The
above one-electron Hamiltonian L is self-adjoint in the Hil-
bert space L2(X [ x) of all square-integrable functions. The
transport properties of the junction are defined by the struc-
ture of the corresponding eigenfunctions of continuous spec-
trum of L – scattered waves. The scattered waves are
obtained via matching on C of solutions of the Schrödinger
equation Lw = kw in X with the scattering Ansatz ~wðx; kÞ ¼
wm

l ðx; kÞ
� �

in the wires xm ¼ ðx : 0 < xk <1; 0 < x? < dÞ.
The Ansatz is combined of oscillating modes, or exponen-
tially decreasing modes in the wires

vl
�ðxÞ :¼ exp �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� V d�p2l2d�2

q
xk

� �
elðx?Þ; k> p2l2d�2;

nlðxÞ :¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2l2d�2þ V d� k

q
xk

� �
elðx?Þ; k< p2l2d�2
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with cross-section eigen-spinors elðx?Þ ¼
ffiffiffiffiffiffiffiffi
2=d

p
el sinplx?=d;

l ¼ 1; 2; . . .

wm
l ðxÞ ¼

vl
þðxÞ þ

P
p2r2=d2<kSm;m

l;r vr
�ðxÞ

þ
P

p2r2=d2>ksm;m
l;r nrðxÞ; x 2 xm;P

p2r2=d2<kSm;n
l;r vr

�ðxÞ
þ
P

p2r2=d2>ksn;m
l;r nrðxÞ; x 2 xn; n 6¼ m:

8>>><
>>>:

ð1Þ

Matching of the scattering ansatz ~w to the solution of the
Schrödinger equation Lw = kw on the bottom sections cm

of the wires gives an infinite linear system for the coeffi-
cients Sn

l;r; s
n
l;r, see for instance [2]. Formally this system

can be solved, if the Green 2 · 2 matrix-function GX of
the Schrödinger equation on X with zero boundary condi-
tion is constructed. Really, according to general theory of
second order linear equations, see [3], the solution u and
the boundary current of the boundary problem with data
ujC ¼ uC is represented by the integral map with the Pois-
son kernel PXðx; cÞ ¼ � oGXðx;cÞ

on

uðxÞ ¼
Z

C
PXðx; cÞuCðcÞdc;

ou
on

����
C

¼ �
Z

C

o2GXðx; cÞ
onxonc

uCðcÞdc

����
C

:¼ DNXuC:

The integral operator DNX with 2 · 2 matrix kernel is
called ‘‘Dirichlet-to-Neumann map’’, see [4,5]. It depends
on k and is analytic with poles at the eigenvalues of the
Schrödinger operator LX on the quantum well with zero
boundary conditions. The coefficients of the scattering An-
satz can be, in principle, found from the infinite linear
system:

ow
on

����
C

¼ DNXwjC: ð2Þ

The difficulty of this problem is defined by the fact, that the
above matching is a strong perturbation of the problem
with the quantum wires x and the quantum well X sepa-
rated by the ‘‘solid wall’’ C with zero boundary condition
on it. Removing of this wall causes breeding of the standing
waves in the quantum well with the running waves in the
wires, creating resonance states, which define resonance
singularities of the transmission across the junction. The
influence of these singularities was observed in numerical
experiments, see for instance [6].

2. Scattering matrix via intermediate DN map

Note that our transport problem contains a small
parameter d so that it can be solved via analytic perturba-
tion procedure in form of power series over dn. Standard
methods of analytic perturbation technique are developed
for problems with discrete spectrum. Generally, the pertur-
bation series for the eigenvalue kd

1 of a perturbed operator
Ld ¼L0 þ dB is convergent if the perturbation is domi-
nated by the half-spacing kdBk < q0/2 at the corresponding
eigenvalue k0

1 of the non-perturbed operator L0 : q0 ¼

mins 6¼1jk0
1 � k0

s j. This requirement is too restrictive for oper-
ators with dense discrete spectrum and generally useless for
operators with continuous spectrum. Nobel prize 1972 win-
ner I. Prigogine [7] suggested an idea of a two-step modifi-
cation of the conventional analytic perturbation technique
with an ‘‘intermediate operator’’ Ld

L0 !Ld !Ld; ð3Þ

assuming that there exist a function Ld of the unperturbed
operator L0 such that the standard analytic perturbation
series connecting the eigenvalues Ld to ones of Ld, on
the second step, is convergent. Search of the intermediate
operator with these properties was not successful, and the
idea was finally abandoned. We revitalize this idea, assum-
ing that the role of the intermediate operator may be
played by an operator which differs from the unperturbed
one L0 by a finite-dimensional perturbation. In case of
the junction this modification corresponds to replacement
of the hard perturbation defined by erection or removal
of the solid wall, associated with the zero boundary condi-
tion on C:

L !erect
LX � lx !

remove
L

by a ‘‘softer’’ – finite-dimensional – perturbation we de-
scribe below, following [9,10].

The continuous spectrum of L consists of a countable
system of branches [1l¼1½p2l2d�2 þ V d;1Þ, separated by
the thresholds p2l2d�2 + Vd inherited from the unperturbed
operator lx in the wires. For low temperature the scattering
processes in the junction are observed only on an essential
spectral interval DT = (K � 2m*j T�h�2 < k < K +
2m*jT�h�2) near the Fermi level K. The spectral band DK

between the upper threshold kmax < K of open channels
and lower threshold kmin > K of closed channels is the con-
ductivity band, see [8]. We assume that DT is a part of the
conductivity band. Linear combinations of all cross-section
spinors which correspond to the thresholds below the Fer-
mi level constitute

P
p2l2d�2þV d<K � felg :¼

P
open � felg :¼

Eþ. We denote by P+ the orthogonal projection onto E+

in L2(C). The subspace E+ 2 L2(C) plays a role of the en-
trance subspace of open channels in scattering processes.
Restrict the full Hamiltonian L! LK � lK via imposing
on C the partial zero boundary condition in open channels,
see [9]:

PþujC ¼ 0: ð4Þ

This boundary condition defines a semi-transparent wall
at C which neither admits to the quantum well the waves
from the open channels in the wires, nor releases the waves
from the quantum well, shaped on C to fit open channels,
to exit from X to x. We refrain here from a discussion of
a physical realization of this boundary condition, but we
remark, that, due to the finite dimension of E+, the pertur-
bation in L introduced by the additional boundary condi-
tion (4) is finite-dimensional. It splits L!LK into two
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