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Abstract

A semi-empirical potential for ferromagnetic bcc iron that also models the co-linear magnetic moment of each atom, has been applied
to clusters and surfaces. Surface energies of low index facets, surface relaxation and magnetic moment are calculated and compared to
various other empirical potentials, recent density functional theory (DFT) results and experimental data. Quantitatively the resulting
surface magnetic moments enhancements are underestimated, however qualitatively the general behavior of the magnetic moment as
a function of surface or cluster layer is comparable to that predicted by DFT calculations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The recent development of an empirical potential for bcc
Fe [1–3] that explicitly takes into account the contribution
of itinerant ferromagnetism to atomic cohesion, opens a
new path for large scale atomistic simulations in which
the co-linear magnetic structure of atomic configurations
can be investigated. The need for such a potential was dem-
onstrated by density functional theory (DFT) calculations
demonstrating that the local magnetic moment of single
self-interstitial defects in bcc Fe is significantly altered at
and around the defects due to the large local deformations
[4,5]. As a result, the lowest self-interstitial defect structure
for bcc Fe is the 110 dumbbell instead of the 111 crowdion
as it is for the group V and VI non-magnetic bcc transition
metals [6]. The interstitial cluster kinetics for Fe being un-
ique amongst the bcc metals [7], it can be expected that de-
fect kinetics have to be reconsidered especially for materials
developed for extreme environments in terms of tempera-
ture, pressure and irradiation. Since modelling plays an

important role in this research field, it is necessary to be
able to perform multi-million magnetic-atomistic simula-
tions with a computational efficiency equal to that of any
other empirical potential model – a regime traditional den-
sity functional theory (DFT) methods cannot address. For
example, large dislocation loop structures can now be rou-
tinely modelled where the elastic strain fields surrounding
the defect perturb the bulk magnetic moment [2,3] – the
so-called magneto-elastic effect [8].

The only property used in the fitting of the magnetic
potential for under coordinated environments was the
vacancy formation energy, and no application of the
method to more complex cases with reduced coordination
environments have thus far been considered. Surface mag-
netism constitutes an important domain of application of
the magnetic potential since accurate quantum mechanical
results and experimental data are readily available for com-
parison. For example, DFT calculations have shown that
surfaces are characterised by a higher magnetic moment
in comparison to the bulk [9]. This, together with detailed
information on surface relaxation structures obtained
using low energy electron surface diffraction [11–13], form
an interesting test case for application of the magnetic
potential. Similarly, moment enhancements have been
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observed for nano-sized clusters using Stern-Gerlach
deflection spectrometry [10]. Measurements have also been
performed on polycrystalline materials yielding an average
surface energy for bcc Fe [14].

In the present work the co-linear magnetic structure of
low Miller index bcc surfaces and of bcc clusters is calcu-
lated using the approach outlined in Refs. [1–3]. The paper
is organised as follows. Section 2 presents the theoretical
framework of the magnetic moment calculation using the
magnetic potential. Section 3.1 discusses the surface relax-
ation structures for low index 100, 110 and 11 1 bcc Fe
using the magnetic potential, and compares the results with
other non-magnetic empirical potentials, DFT data and
experiments. The surface co-linear magnetic moment pre-
dicted by the potential are compared to DFT results. Sec-
tion 3.2 presents a similar analysis for small bcc clusters
for which data from quantum mechanical calculations
and experiments are available. In terms of surface energy,
the magnetic potential produces the correct 100, 110 and
111 surface energy density ordering. For the surface and
cluster co-linear magnetic moment predictions the mag-
netic potential generally underestimates the moment
enhancement. For the 11 0 and 111 ideal surfaces the mag-
netic moment predictions are in qualitative agreement with
DFT. The magnetic potential performs most unsatisfacto-
rily for the 10 0 surface where the outward surface relaxa-
tion predicted by DFT calculations and observed in
experiment is not predicted. The origin of this failure is dis-
cussed in Section 4 and concluded to be due to a strong
100 surface state close to the Fermi energy as is seen in
both DFT calculations and experiment.

2. The magnetic potential model and the calculation of the

local moment

Within the magnetic potential model [1–3], the total
cohesive energy of N atoms may be written within the usual
embedded atom method (EAM) formalism [15]:

Etot ¼
XN

i¼1

F ½qi� þ
1

2

XN

ij;i6¼j

V ðrijÞ; ð1Þ

where the local electron density qi is evaluated via

qi ¼ qc

X
j;i 6¼j

f ðrijÞ: ð2Þ

Within the Finnis–Sinclair (FS) formalism [16,17], Eq. (2)
represents the second moment of the local electronic den-
sity of states rather than a local electronic density, with
the non-magnetic embedding energy given by the band
term, F ½q� ¼ �A

ffiffiffi
q
p

. For the magnetic potential, the
embedding energy is given by
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where the second term represents the magnetic energy con-
tribution to the cohesive energy. The detailed derivation of
Eq. (3) may be found in Refs. [1,3]. In the above formalism,
the repulsive potential V(r) and pair wise electronic density
f(r) are represented as knot functions that are fitted, along
with A and B in Eq. (3), to a large database of physical
properties derived from both DFT calculations and exper-
iment [1]. Inspection of Eq. (3) reveals that when q! qc

from the positive side, where qc is a critical local electronic
density, the magnetic energy becomes zero, indicating that
at some critical volume per atom the magnetic moment
vanishes. This has been demonstrated in DFT calculations
of the equation-of-state curves for ferromagnetic and non-
magnetic bcc Fe, which converge at a critical volume of
approximately 20% of the bulk bcc equilibrium value with
a corresponding reduction to zero of the bcc ferromagnetic
moment [18,19].

To develop an understanding of how the co-linear mag-
netic moment of each atom can be determined, one must
return to the theoretical derivation of Eq. (3) as presented
in Refs. [1,3], where the magnetic energy as a function of
magnetic moment can be written within the Ginzburg-
Landau approximation as

Emagnetic energy ¼ af2 þ bf4: ð4Þ

Here the quadratic term, in which a can be either positive
or negative, drives the Stoner instability to ferromagnetism
and the positive quartic term provides for the final unsatu-
rated finite magnetic moment per atom in bcc Fe. The
parameters a and b depend on the local environment of
the atom. In the above equation, the magnetic moment f
is considered a free parameter. The equilibrium magnetic
moment is given by the condition

oEmagnetic energy

@f
¼ 2fðaþ 2bf2Þ ¼ 0; ð5Þ

the solutions of which are, f = 0 (the non-magnetic solu-
tion), and

f ¼ �
ffiffiffiffiffiffiffiffiffiffi
� a

2b

r
: ð6Þ

Eq. (6) constitutes the desired symmetry-broken ferromag-
netic solutions which upon substitution into Eq. (4) gives
the magnetic part of the embedding energy [1]. From
Ref. [1] one can demonstrate that when q! qc the leading
order environmental dependence of Eq. (4) is via
a / ffiffiffi

q
p � ffiffiffiffiffi

qc

p
, resulting in the magnetic moment on each

atom scaling as

f / � ffiffiffiffiffi
qc

p � ffiffiffi
q
p� �1

2: ð7Þ

In the equilibrium bulk bcc ferromagnetic regime q is non-
negligibly greater than qc leading to practical generalisa-
tions of Eqs. (4) and (7). In the former case this leads to
an expression for the embedding energy as shown in Eq.
(3), whereas for the magnetic moment, past work [3] has
represented f more generally as
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