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Abstract

The Ising model proposed previously for the structural phase transition from (4 · 1) to (8 · ‘‘2’’) of In-adsorbed Si(111) surface,
Hamiltonian of which is consisting of a two-spin interaction as well as a four-spin interaction is shown to be equivalent in thermody-
namic properties to a soluble Ising model with two-spin interactions. Temperature dependence of the long range order and the transition
temperature can now be determined from the exact formulae. Comparison between the simulation results and those from the exact for-
mulae is made to see accuracy of the simulation.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The structural phase transition from (4 · 1) to (8 · ‘‘2’’),
with decreasing temperature, of In-adsorbed Si(1 11) sur-
face is explained by the Ising model with a two-spin as well
as a four-spin interaction, which we previously proposed
[1]. Many experimental and theoretical investigations on
this phase transition have been made [2–23]. Interesting as-
pects of this transition may be summarized as follows; it is
the second order phase transition but the ordered phase
still has some disorder shown by diffuse half-order spots
in X-ray and electron diffraction down to liquid helium
temperatures [1,7,13].

This highly anisotropic system consists of two zigzag In
chains in the (4 · 1) unit cells along the b-axis (4a and b are
fundamental translational vectors, whose details are ex-
plained in the next section), which show a quasi-one-

dimensionality to some extent. (In this paper, the two zig-
zag In chains in the (4 · 1) unit cells along the b-axis are
called simply the (4 · 1) chains.) The Pierls mechanism of
the In zigzag chain seemingly contributes to doubling of
unit cell along the b-axis and the short range order, which
originates from the mechanism, starts at pretty higher tem-
peratures. Each zigzag In chain has two ways of doubling
and the two zigzag chains can have four ways of indepen-
dent doubling by symmetry. In the low temperature phase,
a coupling between neighboring (4 · 1) chains along a-axis
allows only two out of the four doublings and those two
different in the neighboring (4 · 1) chains. Those allowed
two are degenerate by symmetry and produce disorder ob-
served in the diffraction experiments. This is indeed the rea-
son why the low temperature phase is described by
(8 · ‘‘2’’). (To be precise, it should be (8 · 1) as used by
Ref. [13].)

In this paper, we first show by a rather simple nonlinear
transformation on Ising spins that our previous model is
equivalent in thermodynamic properties to a soluble Ising
model with anisotropic two-spin interactions on a rectan-
gular lattice and, then, we have the exact formulae for
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many physical quantities. We compare the temperature
dependence of the long range order parameter and the
transition temperature from those formulae with the results
by the previous Monte Carlo simulation to know its accu-
racy for an extended model, we are going to take in the
forth-coming publication.

This paper is constructed as follows. In the next section,
our Ising model with two- and four-spin interactions on the
rectangular lattice, whose unit cell contains two-spins, is
transformed into an Ising model with two-spin interactions
on a Bravais rectangular lattice. In Section 3, temperature
dependence of the long range order parameter and the
transition temperature from the exact formulae are com-
pared with the results obtained previously and also newly
by the Monte Carlo simulation. Section 4 concludes the
paper with summary and discussions for the present results
and ongoing further works.

2. Transformation from two- and four-spin interaction

model to two-spin interaction model

Our previous model was given by the Hamiltonian, H

H ¼ J
X
lmm

llmmll;mþ1;m þ K
X

lm

ðllm0llm1llþ1;m0llþ1;m1

þ llm0ll;m�1;1llþ1;m0llþ1;m�1;1Þ; ð1Þ

where J (J > 0) is the coupling constant between the nearest
neighbor pair along the b-axis (we took the rectangular
unit cell for (4 · 1), where a = (4,2) and b = (0,1) on the
triangular lattice of Si(1 11) surface), llmm (m = 0,1) is Ising
spin in the (l,m)th unit cell and K (K > 0) is the coupling
constant for four-spin interaction along the a-axis. It is dis-
cussed in Ref. [1] why those interactions are chosen. (In
suffix, comma is omitted if it is clear as l,m,m! lmm.)
Those Ising spins, llmm(m = 0,1) are local order parameters
describing the phase transition.

When we introduce the combined Ising spin Slmm by the
following nonlinear transformation,

Slm0 ¼ llm0ll;m�1;1; Slm1 ¼ llm0llm1; ð2Þ

and we notice l2
lmm ¼ 1, we can have the first term of H

rewritten as

llm0ll;mþ1;0l
2
lm1 þ ll;m�1;1llm1l

2
lm0 ¼ Slm1Sl;mþ1;0 þ Slm0Slm1: ð3Þ

Then, applying the transformation given by Eq. (2) to the
second term of H, we have, together with Eq. (3),

H ¼ J
X

lm

ðSlm1Sl;mþ1;0 þ Slm0Slm1Þ

þ K
X

lm

ðSlm1Slþ1;m1 þ Slm0Slþ1;m0Þ: ð4Þ

This Hamiltonian is nothing but the one of the soluble two-
dimensional Ising model with the nearest neighbor interac-
tion along each the a- and b-axis on the rectangular lattice,
where the lattice point is specified along the b-axis as (lm0),
(lm1), (l,m + 1,0), (l,m + 1,1) . . ., as is shown in Fig. 1.

Important aspect of this transformation, Eq. (2) is that
S-spin is defined by the bi-product of l-spins. Its natural
consequence is that the S-spins are invariant under the
transformation, l!�l so that H is also invariant (l rep-
resents all llmm). This means that each (4 · 1) chain can
have either configuration of l or �l in our model, that
is, l0 = 1, l1 = 1 and l0 = �1, l1 = �1 for S0 = 1 as well
as l0 = �1, l1 = 1 and l0 = 1, l1 = �1 for S0 = �1 (com-
mon suffices l, m are omitted for simplicity). This accounts
for the disorder mentioned in the introduction as is dis-
cussed in our previous letter [1]. Then, the S-spins can de-
scribe thermodynamic properties but, in order to describe
detailed configuration and the disorder in the real system,
we need naturally the l-spins.

It should be noted here that consistency of the boundary
conditions along the b-axis on the l-spins and S-spins
needs some caution, although it does not affect the thermo-
dynamic properties even if they are inconsistent. If we em-
ploy the free end boundary condition for a finite system,
there is perfect consistency by taking 2Nb of the l-spins
i.e. llmm (m = 1, . . .Nb, m = 0,1) and 2Nb � 1 of the S-spins
i.e. Slmm (m = 1, . . .Nb � 1, m = 0, 1 and m = Nb, m = 0) for
given l. In this way, degrees of freedom of the l- and S-
spins agree each other by considering the degeneracy of
l!�l.

If one insists the periodic boundary condition for both
the finite spin systems, then number of spins should be
the same and there should be strong constraint for the S-
spin configurations to kill abundant degrees of freedom.
A half of the all possible configurations of the S-spins do
not correspond to any possible configurations of the l-
spins and must be discarded.

3. Temperature dependence of the long range order

As we describe in the next section, we are going on to an
extended model where the Monte Carlo method is used. It
will be useful to know accuracy of the Monte Carlo method
on size of the system (including the boundary condition
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Fig. 1. The rectangular lattice for the transformed Hamiltonian of
S-spins.
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