INTEGRATION, the VLSI journal 52 (2016) 91-101

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Contents lists available at ScienceDirect

Optimal utilization of adjustable delay clock buffers for timing

—

\!} CrossMark

correction in designs with multiple power modes

Juyeon Kim, Deokjin Joo, Taewhan Kim *

Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

ARTICLE INFO

ABSTRACT

Article history:

Received 18 March 2015

Received in revised form

15 June 2015

Accepted 30 August 2015

Available online 11 September 2015

Keywords:

Adjustable delay buffers
Timing

Clock skew

Power modes

Resource allocation
Design optimization

Meeting clock skew constraint is one of the most important tasks in the synthesis of clock trees.
Moreover, the problem becomes much hard to tackle as the delay of clock signals varies dynamically
during execution. Recently, it is shown that adjustable delay buffer (ADB) whose delay can be adjusted
dynamically can solve the clock skew variation problem effectively. However, inserting ADBs requires
non-negligible area and control overhead. Thus, all previous works have invariably aimed at minimizing
the number of ADBs to be inserted, particularly under the environment of multiple power modes in
which the operating voltage applied to some modules varies as the power mode changes. In this work,
unlike the previous works which have solved the ADB minimization problem heuristically or locally
optimally, we propose an elegant and easily adoptable solution to overcome the limitation of the pre-
vious works. Precisely, we propose an O(n log n) time (bottom-up traversal) algorithm that (1) optimally
solves the problem of minimizing the number of ADBs to be allocated with continuous delay of ADBs and
(2) enables solving the ADB allocation problem with discrete delay of ADBs to be greatly simple and
predictable. In addition, we propose (3) a systematic solution to an important extension to the problem
of buffer sizing combined with the ADB allocation to further reduce the ADBs to be used. The experi-
mental results on benchmark circuits show that compared to the results produced by the best known
ADB allocation algorithm, our proposed algorithm uses, on average under 30-50 ps clock skew bound,
13.5% and 15.8% fewer numbers of ADBs for continuous and discrete ADB delays, respectively. In addition,
when buffer sizing is integrated, our algorithm uses 31.7% and 31.3% fewer numbers of ADBs, even
reducing the area of ADBs and buffers by 15.0% and 16.3% for continuous and discrete ADB delays,
respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many research works on the clock tree optimization such as
clock routing, clock buffer insertion/sizing, and wire sizing have

Clock is one of the most important signals on a chip of syn-
chronous based system, as all the synchronous components on the
chip such as flip-flops (FFs) rely on it. Clock tree is a commonly
used structure of circuits that distributes the clock signal from the
clock source to all the clock sinks (e.g., FFs and latches), where the
clock signal is required. It is imperative that the maximum of the
arrival time difference between the clock sinks, which is known as
global clock skew, should be maintained under a certain bounded
value typically within 10% of the clock period, as a large clock skew
may cause timing violation on the circuits. (If no confusion occurs,
the global clock skew is simply referred to as clock skew in this
presentation.)

* Corresponding author.
E-mail address: tkim@ssl.snu.ac.kr (T. Kim).

http://dx.doi.org/10.1016/j.v1si.2015.08.005
0167-9260/© 2015 Elsevier B.V. All rights reserved.

been performed to control or minimize the clock skew [1-7].
While these approaches were effective, advanced low power
design techniques introduced new challenges to the clock skew
control problem. Specifically, for multiple power mode designs,
where the supply voltage to the circuit components varies dyna-
mically depending on modes, the clock arrival time also varies
accordingly.

Even though the previous works can consider the clock skew
constraint on every power mode, it would be highly likely that the
resulting clock tree uses a substantially long wirelength or there
exists no clock tree that satisfies the clock skew constraint on
every power mode. On the other hand, post-silicon tuning (e.g.,
[8-11]) such as inserting adjustable delay buffers (ADBs) is a
widely used method to deal with the timing problem caused by
process and environment variations. Because the delay of an ADB
can be controlled by its delay control inputs [12], the clock skew

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2015.08.005
http://dx.doi.org/10.1016/j.vlsi.2015.08.005
http://dx.doi.org/10.1016/j.vlsi.2015.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.08.005&domain=pdf
mailto:tkim@ssl.snu.ac.kr
http://dx.doi.org/10.1016/j.vlsi.2015.08.005

92 J. Kim et al. / INTEGRATION, the VLSI journal 52 (2016) 91-101

variation caused by process variation can be tuned by properly
inserting ADBs after the manufacturing stage has been completed.
The idea of using ADBs in multiple power modes is to replace
some of normal clock buffers with ADBs so that the clock skew
constraint on each power mode can be met; when the power
mode changes during execution, e.g., from power mode mode-1 to
power mode mode-2, the delays of ADBs in clock tree that have
been adjusted under mode-1 are readjusted to meet the clock
skew constraint under mode-2. Since ADB logic component is
much bigger than normal buffer and it requires control line as well
as switching logic, the set of related problems to be solved for the
ADB-based clock skew optimization in multiple power modes are
allocating a minimum number of ADBs, finding the normal buffers
(or locations) in the clock tree that are to be replaced by ADBs, and
determining the delay value of ADBs to be assigned on each power
mode. We call these problems collectively ADB allocation problem.

Su et al. [13,14] proposed a linear-time optimal algorithm for
the delay assignment problem and exploits the algorithm to solve
the rest of two subproblems of the ADB allocation problem heur-
istically in a greedy manner. Lin et al. [15] proposed an efficient
algorithm of two-stage approach which performs a top-down ADB
allocation followed by a bottom-up ADB elimination. Even though
the approach reduces the run time over that in [13,14], it still does
not guarantee an optimality of ADB allocation. Lim and Kim [16]
proposed a linear-time algorithm for the ADB allocation problem
where they solved the problem optimally for each power mode.
However, merely collecting the optimal results on individual
power modes does not mean globally optimal for all power modes.
In this work, we revisit the ADB allocation problem and propose a
set of solutions to overcome the limitation of the previous works.
More precisely, we propose (1) an O(n log n) time algorithm that
optimally solves the problem of minimizing the number of ADBs to
be allocated for all power modes with continuous delay of ADBs
and (2) enables solving the ADB allocation problem with discrete
delay of ADBs to be greatly simple and predictable. In addition, we
propose an effective solution to an important extended problem:
(3) the ADB allocation problem combined with buffer sizing. (A
preliminary version, which contains concise descriptions and no
proofs, of our work can be found in [17].)

It should be mentioned that the work in [16] is completely
different from our proposed optimal algorithm by a simple rea-
soning: For example, [16] requires optimally two ADBs, each in
clock nodes 1 and 2, for power mode 1 while requiring optimally
two ADBs, each in nodes 3 and 4, for power mode 2. Thus, the
combined ADB allocation is four ADBs, each in nodes 1, 2, 3, and
4 to meet timing for all power modes. On the other hand, ours
produces an optimal ADB allocation result considering power
modes all together. The globally optimal allocation may be three
ADB:s (i.e., not four ADBs), say, each in nodes 1-3. This reasoning
clearly foresees that as the number of power modes increases, the
gap (i.e., ADB difference) between [16] and ours will increase.

The rest of the paper is organized as follows. Section 2 illus-
trates the structure of ADB implementation and shows an example
of using ADBs for timing correction. Section 3 defines the ADB
allocation problem and shows an example to motivate the work.
Then, Section 4 proposes an optimal algorithm of ADB allocation
with continuous delay values and a modification of the algorithm
to support ADBs with discrete delay values. Section 5 proposes a
solution to the extended problem of integrating buffer sizing into
ADB allocation. Experimental results are provided in Section 6 to
show the effectiveness of our proposed ADB allocation algorithms.
Finally, a conclusion of the work given in Section 7.

2. ADB structure and example of ADB utilization

Fig. 1 shows the structure of a capacitor bank based imple-
mentation of ADB [18]. This implementation of a well-known
capacitor bank based ADB consists of two inverters at the input
and output ports, and in the middle there is an array of capacitors
with switch transistors attached. The switches are controlled by
the capacitor bank controller, which controls the number of active
capacitors according to the control bits. Activating more capacitors
increases the total capacitance between the two inverters, which
in turn increases the signal propagation delay between the input
and output ports. Inverter based ADB [19] is another imple-
mentation structure of ADB, but the adjustable delay values are
less fine-grained than that of the capacitor bank based one.

Fig. 2(a) shows an example of clock tree that has four sinks s1,
s2, s3, and s4, two ADBs replacing two clock buffers, and ADB
control logic. Suppose there are two power modes mode-1 and
mode-2 in this design. Then, the two numbers separated by a slash
next to each sink indicate the clock signal arrival times in mode-1
and mode-2. When the clock skew bound is given to 10, the clock
tree causes clock skew violations in both modes if ADBs were not
used. With the replacement of two clock buffers by ADBs, the two
numbers next to each ADB indicate the delay increments (simply
called delay values) in mode-1 and mode-2: The ADB on the left
adds delay of 2 in mode-1, thus the clock signal arrival time at s1 in
mode-1 becomes 6. Likewise, the ADB on the right adds delay of
3 in mode-2, increasing the arrival time at s3 in mode-2-6. To
control the ADBs' delay, a mode signal is required. In addition,
depending on the implementation of the ADBs, control logic that

YT

Control bits *)‘

Fig. 1. The structure of a capacitor bank based ADB. The capacitor bank adjusts
signal propagation delay from the input to output ports.

VDD

Eﬂ -
e

Capacitor bank

\ | |
Capacitor Bank Controller |

a b
Additional delay of ADB at 400
mode 1/ mode 2 o,
4/8 10/3 o
§ 300 e
F
= L]
I = 200 - .
o
<
E 1004 e "‘
e o 4
mode 0 ;, B
control 0 40 80 120
9/16 l 16/6 Number of ADBs
mode o Suetal[13], [14]
Clock signal arrival . CLK-ADB [16]

time at mode 1/ mode 2

Fig. 2. (a) An example of clock tree with the replacement of two clock buffers with
ADBs. (b) The relationship between the number of ADBs and the total ADB area
(including logic overhead) used by [13,14,16].

Download English Version:

https://daneshyari.com/en/article/542684

Download Persian Version:

https://daneshyari.com/article/542684

Daneshyari.com

https://daneshyari.com/en/article/542684
https://daneshyari.com/article/542684
https://daneshyari.com

