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a b s t r a c t 

In this paper, we discuss the problem of determination of light radiation pressure force upon an 

anisotropic surface. The optical parameters of such a surface are considered to have major and minor 

axes, so the model is called an orthotropic model. We derive the equations for force components from 

emission, absorption, and reflection, utilizing a modified Maxwell’s specular-diffuse model. The proposed 

model can be used to model a flat solar sail with wrinkles. By performing Bayesian analysis for exam- 

ple of a wrinkled surface, we show that there are cases in which an orthotropic model of the optical 

parameters of a surface may be more accurate than an isotropic model. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The theory of light radiation pressure upon space objects is 

well-established. For celestial bodies, this pressure creates the 

Yarkovsky acceleration due to uneven heating of their surface [3,4] . 

There is also a YarkovskyO’KeefeRadzievskiiPaddack (YORP) effect, 

in which an asteroid can spin-up from emission pressure because 

of its irregular shape, [5] up to the disintegration of a body [6,7] . 

For practical applications, the derivation of light radiation pres- 

sure force is necessary for the prediction of the dynamics of 

GNSS satellites [8–13] , for interplanetary stations [14–16] and other 

spacecraft [17] . 

For solar sail applications, there are many studies of light radi- 

ation pressure, including light pressure generalizations [18,19] , and 

special cases – variable reflectance / transmittance coatings [20] , 

degradation effects [21,22] , joint analysis of aerodynamic and radi- 

ation forces on spacecraft [23] , laser propulsion [24,25] , transpar- 

ent sails [26] , etc. There are numerous studies of the astrodynamics 

of solar sails [27–34] etc. 

In the space experiments Nanosail-D2 [35] , IKAROS [36,37] , and 

LightSail [38] it was shown that any solar sail membrane has gen- 

eral curvature, both regular and semi-random (smoothness), and 

also small wrinkles. 
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The light pressure model on the curved solar sail was gener- 

alized by Rios-Reyes and Scheeres [39,40] , Rios-Reyes [41] , Rios- 

Reyes and Scheeres [42] , Scheeres [43] , McMahon and Scheeres 

[44–46] and extended by [47–49] . This model is called the Gen- 

eralized Sail Model (GSM). 

In this paper, we will consider the optical anisotropy from the 

geometrical sources of this anisotropy. The main sources of this op- 

tical anisotropy are wrinkles on the solar sail membrane [50,51] . 

One special case of the effects of wrinkles on the solar sail effi- 

ciency was studied by Greschik [52] . 

We will derive the equations for light radiation pressure by uti- 

lizing the well-established theory of light-matter interaction as in 

radiative heat transfer [53] , and after this, we will move to the vec- 

tor representation of force. 

We will consider the effects of emission, absorption, and reflec- 

tion on light pressure because further phenomena such as trans- 

mission are supposed to be less influential on solar sails than the 

main effects [18] . For each effect, we will consider both isotropic 

and anisotropic cases. For reflection, we will utilize Maxwell’s re- 

flection model [53] , in which we assume that reflection has two 

components as a sum of diffuse and specular cases with corre- 

sponding specularity coefficient s . We will also consider the back 

reflection phenomenon for the orthotropic model. 

2. Reference frames 

Let us consider some surface A in Euclidean space with origin 

O 

′ and associated Cartesian coordinate system O 

′ x ′ 1 x ′ 2 x ′ 3 , Fig. 1 . We 
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Nomenclature 

O 

′ x ′ 1 x ′ 2 x ′ 3 global coordinate frame 

Ox 1 x 2 x 3 local coordinate frame 

ˆ e ′ 
i 
, i = 1 , 2 , 3 unit vectors of global coordinate frame 

ˆ e i , i = 1 , 2 , 3 unit vectors of local coordinate frame 

dA infinitesimal element of surface A 

ˆ n normal to dA 

ˆ m orientation vector for orthotropic model (in 

plane Ox 1 x 2 ) 

r position of dA in global frame 

θ , β direction angles in local frame 

ε′ 
λ

directional spectral emissivity 

ε′ directional integral emissivity 

ε emissivity (for isotropic case) 

B Lambertian coefficient 

T temperature of dA 

ε1 , ε2 , θm 

parameters of orthotropic model for emission 

B m 

modified Lambertian coefficient for or- 

thotropic emission 

c speed of light in vacuum 

i ′ A 
λ

directional spectral intensity of irradiation 

i ′ A directional integral intensity of irradiation 

q 0 integral intensity of light source 

ˆ s vector from light source to dA 

ρ′′ 
λ

bidirectional spectral reflectivity 

ρ′ ′ bidirectional integral reflectivity 

I ′ hemispherical-directional light intensity 

s specularity coefficient 

ρ reflectivity (for isotropic model) 

ρ1 , ρ2 , θm 

parameters for orthotropic model for reflec- 

tion 

B ρ modified Lambertian coefficient for or- 

thotropic reflection 

d F Sr fraction of emission pressure in arbitrary di- 

rection 

ˆ r 

d F Ar fraction of absorption pressure in arbitrary di- 

rection 

ˆ r 

d F Rr fraction of reflection pressure in arbitrary di- 

rection 

ˆ r R 

d F S light pressure from emission 

d F A light pressure from absorption 

d F R light pressure from reflection 

d F total light radiation pressure upon dA 

will call this frame a global frame. Let us introduce ˆ e ′ 
i 

– unit vec- 

tors for the global frame, i = 1 , 2 , 3 . 

On this surface, it is possible to localize an infinitesimal sur- 

face element dA for which we introduce a local Cartesian coordi- 

nate system Ox 1 x 2 x 3 with unit vectors ˆ e i , Fig. 1 . The origin of local 

frame O is situated in the center of dA , and its normal ˆ n is equal 

to ˆ e 3 . [ T ] is a transformation matrix from the local frame to the 

global frame. The orientation of Ox 1 and Ox 2 is arbitrary. 

In the following equations, for any vector, e.g. ˆ r , we will use 

direction angles ( β , θ ) in the local frame as follows ( Fig. 2 ): 

• β ∈ [0, π /2] – angle between vector ˆ r and + x 3 . We consider 

that the infinitesimal surface element is laying on the plane 

Ox 1 x 2 . 

• θ ∈ [0, 2 π ] – angle between axis Ox 1 and a projection of ˆ r on 

the plane Ox 1 x 2 , counterclockwise around Ox 3 . 

Direction angles ( β , θ ) may have additional subscripts or super- 

scripts. 

Fig. 1. Definition of coordinate frames. 

Fig. 2. Definition of angles for arbitrary unit vector ̂  r . 

3. Model 

3.1. Thermal emission 

Let ε′ 
λ

be a directional spectral emissivity, which depends on 

wavelength, temperature, and shows the difference of emission of 

dA in direction ( β , θ ) as compared with black body emission in the 

same direction. One can write the equation of directional integral 

emissivity [53] : 

ε′ (β, θ, T ) = 

π
∫ ∞ 

0 ε′ 
λ

i ′ 
λb 

dλ

σ T 4 
, 

Where σ – Stephan–Boltzmann constant, i ′ 
λb 

(λ, T ) – spectral inten- 

sity of blackbody radiation which is represented by Planck’s law: 

i ′ λb (λ, T ) = 

2 hc 2 

λ5 

(
e 

hc 
λkT − 1 

) , 

Where h – Planck’s constant, c – light speed in vacuum, k – Boltz- 

mann constant. 

Let us introduce an arbitrary unit vector ˆ r in the local frame: 

ˆ r (β, θ ) = sin β cos θ ˆ e 1 + sin β sin θ ˆ e 2 + cos β ˆ e 3 , 

Where β ∈ [0; π /2] and θ ∈ [0; 2 π ]. 

One can write the equation of the fraction of light radiation 

pressure in direction 

ˆ r : 

dF Sr (β, θ, T ) = −ε′ σ T 4 

c 
ˆ r cos βd A . 

The superscript S stands for emission (“self”). The relation cos βdA 

is the area of the infinitesimal element dA under the angle β . 

The equation for projection of light pressure force from emis- 

sion in the direction 

ˆ e i on the area dA can be written as follows: 

d F S i (T ) = 

1 

2 π

∫ 2 π

0 

∫ π
2 

0 

d F Sr · ˆ e i d βd θd A . (1) 
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