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In this paper, we discuss the problem of determination of light radiation pressure force upon an
anisotropic surface. The optical parameters of such a surface are considered to have major and minor
axes, so the model is called an orthotropic model. We derive the equations for force components from
emission, absorption, and reflection, utilizing a modified Maxwell’s specular-diffuse model. The proposed
model can be used to model a flat solar sail with wrinkles. By performing Bayesian analysis for exam-
ple of a wrinkled surface, we show that there are cases in which an orthotropic model of the optical
parameters of a surface may be more accurate than an isotropic model.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of light radiation pressure upon space objects is
well-established. For celestial bodies, this pressure creates the
Yarkovsky acceleration due to uneven heating of their surface [3,4].
There is also a YarkovskyO’KeefeRadzievskiiPaddack (YORP) effect,
in which an asteroid can spin-up from emission pressure because
of its irregular shape, [5] up to the disintegration of a body [6,7].

For practical applications, the derivation of light radiation pres-
sure force is necessary for the prediction of the dynamics of
GNSS satellites [8-13], for interplanetary stations [14-16] and other
spacecraft [17].

For solar sail applications, there are many studies of light radi-
ation pressure, including light pressure generalizations [18,19], and
special cases - variable reflectance |/ transmittance coatings [20],
degradation effects [21,22], joint analysis of aerodynamic and radi-
ation forces on spacecraft [23], laser propulsion [24,25], transpar-
ent sails [26], etc. There are numerous studies of the astrodynamics
of solar sails [27-34] etc.

In the space experiments Nanosail-D2 [35], IKAROS [36,37], and
LightSail [38] it was shown that any solar sail membrane has gen-
eral curvature, both regular and semi-random (smoothness), and
also small wrinkles.
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The light pressure model on the curved solar sail was gener-
alized by Rios-Reyes and Scheeres [39,40], Rios-Reyes [41], Rios-
Reyes and Scheeres [42], Scheeres [43], McMahon and Scheeres
[44-46] and extended by [47-49]. This model is called the Gen-
eralized Sail Model (GSM).

In this paper, we will consider the optical anisotropy from the
geometrical sources of this anisotropy. The main sources of this op-
tical anisotropy are wrinkles on the solar sail membrane [50,51].
One special case of the effects of wrinkles on the solar sail effi-
ciency was studied by Greschik [52].

We will derive the equations for light radiation pressure by uti-
lizing the well-established theory of light-matter interaction as in
radiative heat transfer [53], and after this, we will move to the vec-
tor representation of force.

We will consider the effects of emission, absorption, and reflec-
tion on light pressure because further phenomena such as trans-
mission are supposed to be less influential on solar sails than the
main effects [18]. For each effect, we will consider both isotropic
and anisotropic cases. For reflection, we will utilize Maxwell’s re-
flection model [53], in which we assume that reflection has two
components as a sum of diffuse and specular cases with corre-
sponding specularity coefficient s. We will also consider the back
reflection phenomenon for the orthotropic model.

2. Reference frames

Let us consider some surface A in Euclidean space with origin
0’ and associated Cartesian coordinate system O'x}x,x}, Fig. 1. We
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Nomenclature

O'x| XX, global coordinate frame

0x1X2X3 local coordinate frame

élf, i=1,2,3 unit vectors of global coordinate frame
€;, i=1,2,3 unit vectors of local coordinate frame

dA infinitesimal element of surface A

fi normal to dA

m orientation vector for orthotropic model (in
plane Ox{x;)

r position of dA in global frame

0, B direction angles in local frame

ei directional spectral emissivity

€ directional integral emissivity

€ emissivity (for isotropic case)

B Lambertian coefficient

T temperature of dA

€ parameters of orthotropic model for emission

Bm modified Lambertian coefficient for or-
thotropic emission

c speed of light in vacuum

i;{* directional spectral intensity of irradiation

i directional integral intensity of irradiation

do integral intensity of light source

S vector from light source to dA

o3 bidirectional spectral reflectivity

p” bidirectional integral reflectivity

r hemispherical-directional light intensity

S specularity coefficient

0 reflectivity (for isotropic model)

£1,02,0m parameters for orthotropic model for reflec-
tion

B, modified Lambertian coefficient for or-
thotropic reflection

dFs" fraction of emission pressure in arbitrary di-
rection t

dFA" fraction of absorption pressure in arbitrary di-
rection

dFRr fraction of reflection pressure in arbitrary di-
rection X

dFs light pressure from emission

dFA light pressure from absorption

dFR light pressure from reflection

dF total light radiation pressure upon dA

will call this frame a global frame. Let us introduce &, - unit vec-
tors for the global frame, i =1, 2, 3.

On this surface, it is possible to localize an infinitesimal sur-
face element dA for which we introduce a local Cartesian coordi-
nate system Ox;X,Xx3 with unit vectors &;, Fig. 1. The origin of local
frame O is situated in the center of dA, and its normal fi is equal
to &;. [T] is a transformation matrix from the local frame to the
global frame. The orientation of Ox; and Ox, is arbitrary.

In the following equations, for any vector, e.g. ¥, we will use
direction angles (8, 8) in the local frame as follows (Fig. 2):

« B € [0, m[2] - angle between vector T and +x3. We consider
that the infinitesimal surface element is laying on the plane
0x1X;.

« 0 € [0, 2] - angle between axis Ox; and a projection of £ on
the plane Ox;x,, counterclockwise around Oxs.

Direction angles (8, 8) may have additional subscripts or super-
scripts.

Fig. 2. Definition of angles for arbitrary unit vector f.

3. Model
3.1. Thermal emission

Let e/’\ be a directional spectral emissivity, which depends on
wavelength, temperature, and shows the difference of emission of
dA in direction (8, 0) as compared with black body emission in the
same direction. One can write the equation of directional integral
emissivity [53]:

oo /5
T fo €1pd2

oT4 ’
Where o - Stephan-Boltzmann constant, i}, (A, T) - spectral inten-
sity of blackbody radiation which is represented by Planck’s law:

2hc?

w(etr —1)

Where h - Planck’s constant, ¢ - light speed in vacuum, k - Boltz-
mann constant.
Let us introduce an arbitrary unit vector t in the local frame:

6/(,3, 9, T) =

i,(A.T) =

t(B,0) = sin B cosHé; + sin B sinO&, + cos Bé;,

Where 8 € [0; /2] and 0 € [0; 27 ].
One can write the equation of the fraction of light radiation
pressure in direction #:

€'oT4

dF(B8,6,T) = —

fcos BdA.

The superscript S stands for emission (“self”). The relation cos SdA
is the area of the infinitesimal element dA under the angle B.

The equation for projection of light pressure force from emis-
sion in the direction & on the area dA can be written as follows:

2w 5
de(T):%/O /0 dF" . &,dBdOdA. (1)
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