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a b s t r a c t 

This paper presents a new method of numerical solution of the integral equation for the radiance re- 

flected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and 

solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also 

shown that the kernel of the equation satisfies the condition of the existence of a unique solution and 

the convergence of the successive approximations to that solution. The developed method features two 

basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations 

with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numeri- 

cal examples show good coincidence between the surface-reflected radiance obtained with DISORT and 

the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of 

the downward radiance to the total solution is performed. Together, they represent a very good initial 

guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that 

the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation 

for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF 

retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed 

problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and 

viewing zenith angles. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radiation reflected from the Earth surface presents a valu- 

able source of information about surface properties that can be 

formalized in the Bi-directional Reflection Distribution Function 

(BRDF). That information is required to specify a boundary condi- 

tion for radiative transfer (RT) modeling which is used in aerosol 

retrievals, cloud retrievals, atmospheric modeling and other appli- 

cations. Ground based measurements of reflected radiance draw 

increasing attention as a source of information about anisotropy of 

surface reflection [1–4] , along with development of measurement 

techniques [5] . Atmospheric correction has to be done to derive 

BRDF from surface radiance, so retrieval methods were also devel- 

oped [6,7] . 

The retrieval methods are based on a comparison of the mea- 

sured and computed reflected radiance at the ground level. If yet 

another evaluation of the radiance is needed, then a full radiative 

transfer problem has to be solved anew for the new guess of BRDF. 

Decoupling of the atmospheric radiative transfer and anisotropic 

surface reflectance [8,9] allows one to avoid multiple RT computa- 
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tions if standard problems (no reflection on the boundaries of the 

atmosphere) are solved. In [8] the solution was found in the form 

of a series by the number of reflections. In [9] surface-reflected ra- 

diance is presented as a solution of an integral equation relating 

it with BRDF and radiances transmitted through and reflected by 

the atmosphere. The approaches to solve that equation if standard 

problems are solved with the discrete ordinates method and spher- 

ical harmonics method were also considered in that study. 

The first step in both cases is expansion of all functions of the 

relative azimuth angle into cosine Fourier series and the conse- 

quent separation of the problems for the Fourier components. Once 

they are found, summation of the Fourier series needs to be done. 

King [10] studied how many terms of the Fourier expansion of the 

reflection function need to be retained as required in the case of 

optically thick atmospheres. The observations of that study are: (1) 

“it is necessary that each term in the Fourier expansion of the 

phase function satisfy a normalization condition in quadraturized 

form,” (2) “the reflection function of a semi-infinite atmosphere 

can be represented by a Fourier series whose upper limit depends 

strongly on the angles of incidence,” (3) “for aircraft or satellite 

applications involving scanning radiometers for measuring the re- 

flected intensity field at nadir angles from 0 ° to 45 °, the number of 
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terms required in the Fourier expansion of the reflection function 

for semi-infinite atmospheres will generally not exceed 16,” and (4) 

“Thus in order to maintain a relative accuracy of 0.1% in the reflec- 

tion function of optically thick atmospheres, more terms may be 

required in the Fourier series expansion of the reflection function 

than required for a semi-infinite atmosphere.” The last indicates as 

to the possible increase of the number of terms needed to be re- 

tained with the decrease of optical thickness of the atmosphere. 

In the case of optically thin atmosphere when it makes sense to 

perform atmospheric correction of the ground measurements, the 

relative contribution of single scattering prevails over all other or- 

ders of scattering. Thus, the number of Fourier components needed 

is as much as the number of Fourier components of the phase 

function. Taking into account King’s first finding listed above and 

study [11] stating that “a straightforward numerical evaluation of 

the Fourier coefficients of sharply peaked phase functions based 

on the trapezoidal rule has been shown to be more accurate and 

much more computationally efficient than the use of the Legendre 

series derived from the addition theorem,” the idea of getting rid 

of Fourier expansions as a first step of the solution of the equa- 

tion looks promising. This paper proposes an approach to the so- 

lution of the integral equation for the surface-reflected radiance 

based on 2D discretization on a unit hemisphere. A combination 

of a Gaussian quadrature for integration over cosine of the view- 

ing zenith angle and the regular (equidistant) grid with trapezoidal 

rule for integration over the relative angle comprises the type of 

2D quadrature used in this study. 

2. Statement of the problem and notation (equation for the 

surface reflected radiance) 

If a plane parallel scattering medium is illuminated on its top 

by light coming in direction μ0 = cos θ0 , φ0 = 0, then the diffuse 

radiance inside the medium and its boundaries is a solution of the 

radiative transfer equation (RTE): 

μ
∂ I 

∂τ
+ I ( τ, μ, φ, μ0 ) = I 0 μ0 e 

−τ/μ0 χ( μ, μ0 , φ) 

+�

∫ 2 π

0 

d φ′ 
∫ 1 

−1 

d μ′ χ
(
μ, μ′ , φ − φ′ ) I 

(
τ, μ′ , φ′ , μ0 

) (1) 

where τ is optical depth, � – single scattering albedo (SSA), 

μ= cos θ , θ , φ are the polar and azimuth angles of the direction of 

propagation of light, χ ( μ, μ′ , φ −φ′ ) is the scattering phase func- 

tion normalized with condition: ∫ 2 π

0 

dφ′ 
∫ 1 

−1 

d μ′ χ
(
μ, μ′ , φ − φ′ )= 1 (2) 

RTE (1) has to be supplemented by appropriate boundary con- 

ditions (BCs) on the top and bottom boundaries. For further de- 

velopment we need to consider 3 related boundary value prob- 

lems (BVPs) schematically depicted in Fig. 1 (a)–(c). Vertical axis 

is pointed from top to bottom surface, so that μ= cos θ > 0 for 

downward radiation. The first problem is for the atmosphere illu- 

minated from its top and bounded at the bottom by a reflective 

surface described with BRDF ρ [12] : 

I ( τ = 0 , μ > 0 , φ, μ0 ) = 0 

I ( τ = τt , μ < 0 , φ, μ0 ) = I 0 μ0 e 
−τt / μ0 ρ( μ0 , −μ, φ) 

+ 

∫ 2 π

0 

dφ′ 
∫ 1 

0 

d μ′ μ′ ρ
(
μ′ , −μ, φ − φ′ )I 

(
τ = τt , μ

′ , φ′ , μ0 

)
(3) 

We will denote this as BVP1. Two other problems are similar: 

the medium is illuminated from its top and there is no reflection 

at the bottom surface 

I ( τ = 0 , μ > 0 , φ, μ0 ) = 0 

I ( τ = τt , μ < 0 , φ, μ0 ) = 0 (4) 

Fig. 1. Schemes of the BVPs: a–1, b–2, c–3. Thick green line in a) depicts reflecting 

surface. Darker green arrows are for surface-reflected radiance. Blue arrows in b) 

are for diffuse transmitted radiance. Blue arrows in c) are for radiance reflected by 

the flipped atmosphere. (For interpretation of the references to color in this figure 

legends, the reader is referred to the web version of this article.) 
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