
Journal of Quantitative Spectroscopy & Radiative Transfer 202 (2017) 154–167 

Contents lists available at ScienceDirect 

Journal of Quantitative Spectroscopy & Radiative Transfer 

journal homepage: www.elsevier.com/locate/jqsrt 

Near-field radiative heat transfer in scanning thermal microscopy 

computed with the boundary element method 

K.L. Nguyen 

∗, O. Merchiers , P.-O. Chapuis 

Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621, Villeurbanne, France 

a r t i c l e i n f o 

Article history: 

Received 14 February 2017 

Revised 29 May 2017 

Accepted 20 July 2017 

Available online 21 July 2017 

Keywords: 

Near-field radiative heat transfer 

Scanning thermal microscopy 

Boundary element method 

a b s t r a c t 

We compute the near-field radiative heat transfer between a hot AFM tip and a cold substrate. This con- 

tribution to the tip-sample heat transfer in Scanning Thermal Microscopy is often overlooked, despite its 

leading role when the tip is out of contact. For dielectrics, we provide power levels exchanged as a func- 

tion of the tip-sample distance in vacuum and spatial maps of the heat flux deposited into the sample 

which indicate the near-contact spatial resolution. The results are compared to analytical expressions of 

the Proximity Flux Approximation. The numerical results are obtained by means of the Boundary Element 

Method (BEM) implemented in the SCUFF-EM software, and require first a thorough convergence analy- 

sis of the progressive implementation of this method to the thermal emission by a sphere, the radiative 

transfer between two spheres, and the radiative exchange between a sphere and a finite substrate. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radiative heat transfer in the far field [1] , i.e . for inter-object 

distances larger than Wien’s wavelength ( ∼ 10 μm at room tem- 

perature), is well established. In contrast, near-field radiative heat 

transfer (NFRHT), when the gap size between objects is smaller 

than Wien’s wavelength, is a relatively new field. It was realized 

few decades ago that near-field radiative effects can have an im- 

pact on the local temperature or on the heat flux transfer in scan- 

ning probe microscopy (SPM) techniques [2] . It is especially impor- 

tant for scanning thermal microscopy (SThM), a technique which 

aims at measuring local temperature or thermal properties. To un- 

derstand these local measurements, a precise knowledge of all the 

heat transfer mechanisms between the SThM tip and the sample 

under study is required [3] . The contribution of near-field thermal 

radiation has been so far the hardest to estimate accurately due to 

a lack of reliable theoretical methods able to deal with complex ge- 

ometries. Nevertheless, this contribution is critical when the tip is 

not in contact, in particular when the SThM is operated in vacuum. 

Tip-sample near-field heat transfer has received increasing atten- 

tion during the last decade thanks to technical advances allowing 

experiments with improved thermal sensitivity down to the sub- 

nW.K 

−1 regime [4–8] . Recently, such experiments have been car- 

ried out to measure radiative heat transfer in the last few nanome- 

ters before contact [7–9] . Other SPM techniques, such as Thermal 
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Radiation Scanning Tunneling Microscopy (TR-STM) [10,11] , where 

the near field is scattered and detected in the far field, therefore 

providing sub-wavelength information on the sample [10] , are also 

impacted by heat transfer between the probe and the sample. Ob- 

viously, various SPM techniques could also benefit from improved 

theoretical methods to predict NFRHT between complex objects. 

NFRHT was quantified by analytical and numerical meth- 

ods in various configurations. Since the seminal case of two 

half-spaces [12] , analytical methods were developed to quantify 

the heat transfer between academic configurations involving pla- 

nar media and dipoles, spheres, cylinders (see e.g. respectively 

[4,13–15] ). These approaches are, however, limited to simple ge- 

ometries. Numerical methods used in NFRHT are based on those 

for electromagnetic wave scattering and propagation. The Finite 

Difference Time Domain (FDTD) method [16] was used for comput- 

ing the heat exchanged between arbitrary geometries in a statisti- 

cal manner. It consists in applying the fluctuation-dissipation the- 

orem to the Poynting vector averaged over many simulations by 

considering the random values of surface currents. The drawbacks 

of this method are the long computational time and the accuracy 

of the numerical results due to various numerical errors such as 

discretization of objects and numerical dispersion intrinsic to the 

space-time scheme. The radiative heat transfer can be also com- 

puted by implementing the Thermal Discrete Dipole Approxima- 

tion (T-DDA) and the BUlk Field Formulation of ElectroMagnetism 

(BUFF-EM) methods. The T-DDA method was proposed initially for 

modelling radiative heat transfer between three-dimensional arbi- 

trary compact objects [17] and then extended to finite-size object 

close to an infinite surface [18] . This method consists in discretizing 
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the objects in sub-volumes, each considered as a thermally oscil- 

lating dipole. The BUFF-EM is a free, open-source software imple- 

mentation of the frequency-domain volume-integral-equation (VIE) 

method of classical electromagnetic scattering [19,20] . It consists in 

modelling the bodies by volume (tetrahedral) meshes. The last ap- 

proach we will discuss is based on the surface-integral-equation 

(SIE) formulation of classical electromagnetism that allows direct 

application of the boundary element method (BEM) [21] . It at- 

tracted a lot of attention because it offers considerable flexibility 

to handle arbitrary shapes. Contrary to the T-DDA and BUFF-EM 

methods, it requires to discretize the surface and not the volume, 

so that less mesh elements could be required. In this work, we use 

the implementation of this approach provided in the open-source 

SCUFF-EM software package developed at MIT [22] . It was already 

used in [7,8] for the analysis of the tip-sample radiative heat trans- 

fer, but not in a comprehensive way. 

The paper is organized in two main parts devoted (i) to the 

SCUFF-EM computations ( Sections 2 and 3 ) and (ii) to the AFM 

tip-sample radiative heat transfer ( Section 4 ). We first perform cal- 

culations of thermal radiative emission and radiative transfer in- 

volving homogeneous spheres in Section 2 to validate the SCUFF- 

EM code against asymptotic formulae. Section 3 deals with ther- 

mal transfer between a sphere and a planar substrate. This config- 

uration is of interest in scanning thermal microscopy where the 

probe tip can sometimes be approximated by a sphere [7,11,23] . 

Furthermore, spheres attached to tips have been used for experi- 

mental investigations of near-field thermal radiation [4,5] . This sec- 

tion explains which requirements are needed to simulate a planar 

surface. Sections 2 and 3 analyse numerical convergence and could 

be used as a guide for future computations with SCUFF-EM for 

other geometries. The final section introduces the numerical mod- 

elling of heat transfer between a conical probe tip and a planar 

substrate. The dependence of heat transfer on the gap size be- 

tween a compact object (sphere or tip) and a substrate is stud- 

ied in Sections 3 and 4 for highlighting the near-field characteris- 

tics. Finally we compare the flux levels computed with recent ex- 

periments and investigate the shape of the heat flux distribution 

on top of the sample in order to determine the spatial resolution 

of radiative heat transfer. This is done for two typical radii of cur- 

vature. The numerical results are compared to predictions of the 

Proximity Flux Approximation [24] (also called the Derjaguin ap- 

proximation). 

2. Validation of SCUFF-EM 

In this section, the accuracy of the SCUFF-EM code as a function 

of object and mesh size will be compared with known analytical 

results. SCUFF-EM is a free, open-source software implementation 

of the boundary-element method (BEM) for electromagnetic scat- 

tering. SCUFF-NEQ is an application code in the SCUFF-EM suite 

for studying non-equilibrium (NEQ) electromagnetic-fluctuation- 

induced phenomena. It gives the radiative heat transfer or emis- 

sion rates for bodies of arbitrary shapes (spheres, cylinders, in- 

terlocked rings, conical shapes [7,21,25] , etc.) and arbitrary (lin- 

ear, isotropic, piecewise homogeneous) frequency-dependent per- 

mittivity and permeability. The numerical calculations were per- 

formed on the P2CHPD cluster (high-performance computing fa- 

cility at Université Claude-Bernard Lyon 1). Many nodes may be 

used for parallel or sequential computing. Each node has 64 GB 

RAM and two processors with 16 cores Intel(R) Xeon(R) CPU E5- 

2670@2.6 GHz. 

We first consider thermal radiative emission and radiative 

transfer involving homogeneous spheres, the simplest compact ob- 

jects. Thermal emission by a homogeneous sphere is known ana- 

lytically, in a framework related to Mie theory [26,27] . 

2.1. Thermal emission of a sphere 

The thermal radiation power emitted by a sphere is given by 

Q rad (T ) = 

∫ ∞ 

0 

�(ω , T ) τrad (ω , R ) dω (1) 

where R is the sphere radius, �(ω, T ) = 

h̄ ω 

e 
h̄ ω 

k B T − 1 

is the mean en- 

ergy of the Planck oscillator at temperature T and τ rad denotes a 

temperature-independent dimensionless transmittivity that can be 

computed using the Mie coefficients [26,27] . 

In this work, only isothermal objects are studied. Two materi- 

als are considered: SiO 2 and SiC. The optical properties of SiO 2 are 

taken from Ref. [28] . The dielectric function of SiC is given by 

ε(ω) = ε ∞ 

(
1 + 

ω 

2 
L − ω 

2 
T 

ω 

2 
T 

− ω 

2 − i �ω 

)

where ε ∞ 

= 6 . 7 , ω L = 1 . 825 × 10 14 rad.s −1 , ω T = 1 . 494 × 10 14 

rad.s −1 et � = 8 . 966 × 10 11 rad.s −1 . 

We first consider a single SiC sphere. Fig. 1 a compares the spec- 

trum of τ rad of the SiC sphere of radius 0.1 μm, computed for 

two different meshes, and the results obtained by the analyti- 

cal model (black curve). Blue crosses correspond to the numeri- 

cal results obtained for a coarse mesh which consists of 172 nodes 

and 507 edges with a mesh element size of 0.035 μm. Red cir- 

cles are the numerical results for the finer mesh with 494 nodes 

and 1473 edges with a mesh element size of 0.017 μm. We note 

that τ rad shows two maxima close the SiC resonance ( ε(ω) = −2 

for ω � 1.5 × 10 14 rad.s −1 and ω � 1.75 × 10 14 rad.s −1 ). For each fre- 

quency, the computation takes 12 s for the coarse mesh and 25 min 

for the fine mesh. From Fig. 1 a, the numerical results are in good 

agreement with analytical results. As expected, Fig. 1 b represents 

the relative error of numerical results compared to analytical ones. 

The numerical results converge as the mesh gets finer. However, 

the relative error stays around 20% close to the resonance and does 

not decrease when the mesh size is decreased. 

Fig. 2 a represents τ rad of a smaller SiC sphere of radius 

0.0125 μm. Similarly to the previous test case, two meshes are con- 

sidered: one containing 172 nodes and 507 edges with a mesh el- 

ement size of 0.004 μm, and another one consisting of 492 nodes 

and 1467 edges with a mesh element size of 0.002 μm. The rel- 

ative error is shown in Fig. 2 b. Numerical results for the coarse 

mesh (blue crosses) are consistent with analytical results except 

in the low-frequency range. These results become worse for the 

fine mesh because there is an inherent numerical difficulty for the 

computation at low frequencies or for very small objects, typically 

for the case where the ratio between the element size and the 

wavelength is lower than 2 × 10 −4 . We will therefore need to pay 

attention to this point in what follows. 

The refractive index n = Re (n ) + i Im (n ) sets two characteris- 

tic lengths λ/Re( n ) and λ/Im( n ) to which the mesh size should 

be compared. As a result, we now study the effect of the refrac- 

tive index n on the convergence by analyzing the variation of τ rad 

of a sphere of 10 μm radius for different meshes at a given fre- 

quency 1.88 × 10 14 rad.s −1 (the wavelength in vacuum is 10 μm). 

Two meshes are considered, with mesh element sizes �x = 1 μm 

and �x = 2 μm. Fig. 3 a represents the relative error as a func- 

tion of the ratio between �x and the wavelength in the sphere 

λ/Re( n ), for Im (n ) = 0 . 01 with Re( n ) varying from 10 −3 to 10 3 . 

Fig. 3 b shows the relative error as a function of the ratio between 

�x and the penetration depth λ/(2 π Im( n )), for Re (n ) = 1 with 

Im( n ) varying from 10 −2 to 10 4 . Red curves correspond to the re- 

sults for the coarse mesh and blue curves are results obtained for 

the fine mesh. We observe that when the mesh size is reduced 

twice, relative errors decrease three times while the computational 
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