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a b s t r a c t 

In a recent paper on radiation pressure forces exerted on a homogenous spherical particle by zeroth-order 

Mathieu beams (zMBs), the integral localized approximation(ILA) was used to calculate the beam shape 

coefficients (BSCs) encoding the shape of the beams. Unfortunately, this method is valid only for beams 

with a propagating factor exp ( ± ikz ). In the case of non-diffracting beams the propagation factor is exp 

( ± ik cos α z ) which involves an extra-cosine term, with α being the axicon angle. Due to this term it has 

been demonstrated that localized approximations, including ILA, provide a satisfactory description of the 

intended beam only if the axicon angle is small enough. Zeroth-order Mathieu beams pertain to this type 

of beams. The present paper is therefore devoted to a comparison between BSCs calculated with an exact 

procedure and those calculated using ILA, in order to determine a range of validity of the approximate 

procedure. As a side result, we also establish exact closed-form expressions to the evaluation of BSCs of 

zMBs. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The study of interactions between laser light and particles has 

become a major field of research during the last decades, in par- 

ticular due to its interest in optical particle characterization, optical 

trapping and stretching, and morphology-dependent resonances, to 

name a few [1] . Beside the conventional use of plane waves in the 

pre-laser ages and of Gaussian beams, many other kinds of beams 

have been used such as Bessel beams (BBs) [2,3] , Laguerre–Gauss 

beams [4,5] , laser sheets [6,7] , or parabolic beams [8] . Also, many 

kinds of particle shapes have been considered by using either Gen- 

eralized Lorenz-Mie theory (GLMT) [9–11] or the Extended Bound- 

ary Condition Method (EBCM) [12] . The description of shaped 

beams, in these theories, is carried out, implicitly or explicitly, in 

terms of Vector Spherical Wave Functions (VSWFs) with expansion 

coefficients expressed in terms of sub-coefficients, usually denoted 

as g m 

n,T M 

and g m 

n,T E 
, called the TM and TE beam shape coefficients 

(BSCs), respectively. These coefficients encode the beam shapes. 

There exist several methods to evaluate the BSCs, e.g. [13] . 

When available, the use of an exact analytical formulation with 
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closed-form expressions is to be preferred. The most general tech- 

nique, actually the original one established in the first steps of de- 

velopment of the GLMT, e.g. [14] , is the quadrature technique rely- 

ing on numerical computations, and available under two different 

formulations [15] , one using a double quadrature over angular co- 

ordinates θ and ϕ (F1-formulation), and the other using a triple 

quadrature over spherical coordinates r , θ and ϕ (F2-formulation). 

Unfortunately, the quadrature methods are time-consuming due to 

the fact that the kernel to integrate is highly oscillating. A very ef- 

fective method, however, is the use of a localized approximation 

which revealed itself to be the most efficient one in the case of 

Gaussian beams [16,17] , recently reviewed in [18,19] . 

Among the many kinds of beams which have been considered, 

there has been an increasing interest in non-diffracting beams af- 

ter the introduction of BBs by Durnin [2] , and by Durnin et al. 

[3] . These beams are non-diffracting (they propagate without any 

change in their shape) and, furthermore, self-healing. Another class 

of non-diffracting beams on which we shall focus on this paper is 

the class of Mathieu beams [20,21,22] . Although BBs, at the present 

time, are studied more extensively than Mathieu beams, the situ- 

ation may change in the future because these last beams exhibit 

an elliptical feature, and a zone of illumination characterized by a 

central spot and side lobes, which make them appealing for some 

applications, such as by Kartashov et al. who used Mathieu beams 
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to produce periodic lattice in order to analyze the properties and 

stability of two-dimensional optical solitons [23,24] . More specif- 

ically, we are concerned with the evaluation of BSCs of linearly 

x -polarized zMBs. 

The problem we now have to address in the present paper is 

best understood by first considering the case of BBs which share 

with Mathieu beams the property of having a propagation factor 

reading as exp ( ± ik cos α z ) in which α is known as the axicon 

angle (or half-cone angle). This is in contrast with the propagation 

factor exp ( ± ikz ) used to design localized approximations for “ar- 

bitrary shaped beams” in [25] . It has then been demonstrated that 

the extra cos α term has a deleterious effect on the quality of local- 

ized approximations for BBs (more generally for any kind of beams 

having a propagation factor containing a cos α-term) [19,26] . The 

validity of localized approximations in the case of zeroth-order 

BBs was afterward examined by comparing BSCs obtained by us- 

ing either an exact closed-form solution [27] or a localized approx- 

imation procedure [28] . It was concluded that the localized beam 

model approximates reasonably well the intended beam only when 

the axicon angle is typically less than 10 ° Consequences on the cal- 

culation of radiation pressure forces are examined in [29] , while 

discrete superpositions of BBs are considered in [30] . From these 

complementary works, it is concluded that discrepancies become 

significant as the axicon angle increases above the paraxial limit, 

when the BSCs subscript n and superscript m increase or when the 

incident beam departs from the on-axis case. 

The aim of this paper is therefore to provide a similar analy- 

sis for Mathieu beams which share, with BBs, the property of hav- 

ing a propagation factor exp ( ± ik cos α z ). BSCs obtained by using 

closed-form expressions are compared with BSCs obtained by us- 

ing an integral localized approximation (ILA), in the case of a lin- 

early x -polarized zMB. 

The paper is organized as follows. Derivation of analytical ex- 

pressions of BSCs is presented in Section 2 . Also, the convergence 

of the exact BSC-procedure is verified numerically and compared 

with the one presented in [31] in the case of zeroth-order BBs. 

Section 3 provides numerical comparisons between closed-form 

BSCs and those obtained by ILA, with an emphasis on the influ- 

ence of some parameters, i.e. axicon angle, ellipticity parameter q , 

and subscripts m and n as well. Section 4 is a conclusion. 

2. Exact calculation of BSCs of x -polarized zeroth-order 

Mathieu beam 

A zeroth-order Mathieu beam (zMB) is a solution of the scalar 

two dimensional Helmholtz equation in elliptic cylindrical coordi- 

nates, which can be expressed as a product of radial and angu- 

lar Mathieu functions [20] . Also, such a beam can be expressed as 

a sum of BBs of various orders as demonstrated in [21] . It is de- 

scribed in this paper by using a Cartesian coordinate system ( O, x, 

y, z ) attached to a point space P, with ( ρ0 , ϕ0 , z 0 ) being the coordi- 

nates of the beam center in this system, and ( ρg , ϕg , z ) the coordi- 

nates of P in the beam coordinate system (see Fig. 1 ). According to 

Eq. (4) in [21] , the scalar zMB can be written as: 

E = E 0 

∞ ∑ 

j=0 

( −1 ) 
j A 2 j ( q ) J 2 j ( k t ρg ) cos ( 2 j φg ) e 

i k z z 

= E 0 e 
i k z z 

∞ ∑ 

j=0 

∑ 

ν= ±2 j 

( −1 ) 
j 

2 

A 2 j ( q ) J ν ( k t ρg ) e 
iνφg , (1) 

where k t = k sin α and k z = k cos α are the transverse and the lon- 

gitudinal components of the wave vector, respectively, α is the 

associated axicon angle, q is the ellipticity parameter reading as 

q = 

h 2 k 2 t 
4 where h is the interfocal parameter, J ν (.) is a Bessel func- 

tion of first kind and integer order ν and A 2 j ( q ) are Mathieu coef- 

Fig. 1. Cylindrical coordinates of Mathieu beams (of center O b ) and the point P. 

ficients. We recall also that for q = 0, all A 2 j (0) are zero except for 

A 0 (0) = 0.7314. Then, zMBs become zeroth-order BBs. 

Eq. (1) allows us to build scalar or vectorial zMBs from a lin- 

ear superposition of scalar or vectorial BB solutions of vectorial 

Helmholtz equation as in [32] . According to Wang et al. [32] , the 

electric and the magnetic fields of Maxwellian x -polarized BBs are 

given by 

E b x = E 0 cos αJ n ( k t ρg ) ( −i ) 
n e in φg e −i k z ( z−z 0 ) , (2.a) 

E b y = 0 , (2.b) 

E b z = −1 

2 

E 0 e 
in φg e −i k z ( z−z 0 ) sin α

[
( −i ) 

n +1 J n +1 ( k t ρg ) e 
i ( n +1 ) φg 

+ ( −i ) 
n −1 J n −1 ( k t ρg ) e 

i ( n −1 ) φg 
]
, (2.c) 

B 

b 
x = B 0 sin 

2 α
[ 

i cos 2 φg −i sin 2 φg +2 cos φg sin φg 

k 2 t ρ
2 
g 

( n 

2 −n ) J n ( k t ρg ) 

+ 

in sin 2 φg −in cos 2 φg + 2 cos φg sin φg 

k t ρg 
J n + 1 ( k t ρg ) 

− cos φg sin φg J n ( k t ρg ) ] ( −i ) 
n e in φg e −i k z ( z−z 0 ) 

, (2.e) 

B 

b 
y = B 0 

{ [ 
sin 

2 α sin 2 φg −cos 2 φg +2 i cos φg sin φg 

k 2 t ρ
2 
g 

( n 

2 − n ) 

+ 

(
sin 

2 φg + cos 2 αcos 2 φg 

)] 
J n 
(
k t ρg 

)
+ sin 

2 α sin 2 φg −cos 2 φg −2 in cos φg sin φg 

k t ρg 
J n +1 

(
k t ρg 

)} (
−i 

)n 

e in φg 

e 
−i k z 

(
z−z 0 

)
, (2.f) 

B 

b 
z = B 0 cos α sin α

[
cos φg −i sin φg 

k t ρg 
n J n ( k t ρg ) + i sin φg J n + 1 ( k t ρg ) 

]

( −i ) 
n e in φg e −i k z ( z−z 0 ) , (2.g) 

in which E 0 and H 0 are the electric and magnetic field strengths, 

respectively, and where the superscript “b ” indicates BBs. Then, the 

x -polarized zMBs electric field components are 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

E x = E 0 cos α
∞ ∑ 

j=0 

( −1 ) 
j 

2 
A 2 j ( q ) 

∑ 

ν= ±2 j 

J ν ( k t ρg ) ( −1 ) 
νe iνφg e −i k z ( z−z 0 ) 

E y = 0 

E z = − 1 
2 

E 0 e 
−i k z ( z−z 0 ) sin α

∞ ∑ 

j=0 

( −1 ) 
j 

2 
A 2 j ( q ) 

∑ 

ν= ±2 j 

[
( −i ) 

ν+ 1 
J ν+ 1 ( k t ρg ) e i ( ν+ 1 ) φg + ( −i ) 

ν−1 
J ν−1 ( k t ρg ) e i ( ν−1 ) φg 

]
. 

(3) 
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